## TRANSACT

Technologies Incorporated

## Model 9000 <br> Programmer's Guide



PN 100-10937, Rev G July 2017

## Change History



Federal Communications Commission Radio Frequency Interference Statement The Model 9000 Printer complies with the limits for a Class A computing device in accordance with the specifications in Part 15 of FCC rules. These regulations are designed to minimize radio frequency interference during installation; however, there is no guarantee that radio or television interference will not occur during any particular installation. Interference can be determined by turning the equipment off and on while the radio or television is on. If the printer causes interference to radio or television reception, try to correct the interference by one or more of the following measures:

1. Reorient the radio or television receiving antenna
2. Relocate the printer with respect to the receiver
3. Plug the printer and receiver into different circuits

If necessary, the user should consult their dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful: How to Identify and Resolve Radio/TV Interference Problems. This booklet is available from the US Government Printing Office, Washington, DC 20402. Ask for stock number 004-000-00345-4.

## Canadian Department of Communications Radio Interference Statement

The Model 9000 Printer does not exceed Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

## Regulatory Compliance

FCC Class A
ULc
CE Mark
UL 1950
TUV

## Disclaimer

NOTICE TO ALL PERSONS RECEIVING THIS DOCUMENT:
The information in this document is subject to change without notice. No part of this document may be reproduced, stored or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of TransAct Technologies, Inc. ("TransAct"). This document is the property of and contains information that is both confidential and proprietary to TransAct. Recipient shall not disclose any portion of this document to any third party.

TRANSACT DOES NOT ASSUME ANY LIABILITY FOR DAMAGES INCURRED, DIRECTLY OR INDIRECTLY, FROM ANY ERRORS, OMISSIONS OR DISCREPANCIES IN THE INFORMATION CONTAINED IN THIS DOCUMENT.

TransAct cannot guarantee that changes in software and equipment made by other manufacturers, and referred to in this publication, do not affect the applicability of information in this publication.

## Copyright

© 2007-2017 TransAct Technologies, Inc. All rights reserved.
Revision Level G
July 2017
Printed in USA

## Trademarks

Some of the product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

BANKjet, 50Plus, Insta-Load, Ithaca, "Made to Order. Built to Last", Magnetec, PcOS, POSjet, PowerPocket, iTherm", "PRINT IT. STICK IT.", POWEROLL, "RECEIPTS THAT REGISTER", and TransAct are registered trademarks and Epic 950, Epicenteral, Flex-Zone, imPort, ithaColor, KITCHENjet, Momentum, QDT and TicketBurst are trademarks of TransAct Technologies, Inc.

QR Code is registered trademark of DENSO WAVE INCORPORATED in JAPAN and other countries.
EPSON and ESC/POS are registered trademarks of Seiko Epson Corporation in Japan and other countries.

## Table of Contents

Change History ..... 2
Canadian Department of Communications Radio Interference Statement ..... 3
Regulatory Compliance ..... 3
Disclaimer ..... 4
Copyright ..... 4
Trademarks ..... 4
Table of Contents ..... 5
Figures ..... 14
Tables ..... 16
About the Model 9000 Printer ..... 17
Who Should Read This Guide? ..... 17
What Is Included in This Guide? ..... 17
Warranty Options ..... 17
Technical and Sales support ..... 18
On-line Technical Support ..... 18
Telephone Technical Support ..... 18
Return Materials Authorization and Return Policies ..... 18
Service Programs ..... 18
Sales Support ..... 19
Contact Information ..... 19
Model 9000 Specifications and Requirements ..... 20
Model 9000 Thermal Printer Models ..... 20
Standard Features .....  20
General Specifications ..... 22
Printing Specifications ..... 22
Physical Characteristics ..... 23
Dimensions. ..... 23
Weight ..... 23
Electrical Characteristics ..... 24
Internal AC Powered ..... 24
External Powered DC ..... 24
Thermal Print Head ..... 25
Media Specifications ..... 26
Receipt Paper ..... 26
Monochrome ..... 26
Color ..... 26
Liner-less Label Paper - Monochrome ..... 26
Paper Out ..... 27
Paper Low ..... 27
Receipt Printing, Auto Cutter Position ..... 27
Top of Form Marks ..... 28
Buzzer ..... 29
Cover Interlock ..... 29
Display Pass Through ..... 29
Communications Interface ..... 30
USB Interface ..... 30
Powered USB Interface ..... 30
Parallel Interface ..... 31
Signal Levels ..... 31
RS-232 Serial Interface ..... 32
Serial Port Features ..... 32
Signal Voltage and Current levels ..... 32
Display Pass Through ..... 32
Ethernet 10/100-Base-T adapter ..... 33
General Ethernet Definitions ..... 33
Cash Drawer ..... 35
Interface Description ..... 35
Cash Drawer Pin Assignments ..... 35
Setup ..... 36
Verifying the Configuration ..... 36
Verify the Communications Interface Card ..... 36
USB Interface (Without interface card) ..... 36
Parallel Interface ..... 36
Serial Interface ..... 36
Changing Interface Cards ..... 36
Removing the Old Interface Card ..... 37
Installing Cables ..... 37
Connecting power ..... 37
Connecting Communications Cables ..... 38
Serial ..... 38
Parallel ..... 38
USB ..... 38
Ethernet ..... 38
Verify the Firmware Configuration ..... 39
Installing Paper ..... 39
Auto Paper Sensing ..... 39
Printer Drivers and Printer Controls ..... 40
Definitions for terms you will see in this guide: ..... 40
Windows Drivers ..... 40
Windows Device Drivers ..... 40
Windows Printer drivers ..... 40
OPOS (UnifiedPOS/UPOS)? ..... 41
Windows Printer Driver ..... 42
When to use a windows printer driver: ..... 42
When not to use a windows printer driver: ..... 42
OPOS driver ..... 42
When to use an OPOS driver: ..... 43
When not to use an OPOS driver: ..... 43
POSPrinter ActiveX Control (POSPrinter OCX) ..... 44
When to use the POSPrinter OCX: ..... 44
When not to use the POSPrinter OCX: ..... 44
Where to get more information ..... 44
How to Operate the Model 9000 Printer ..... 45
Power Switch ..... 45
Feed Button ..... 45
Indicator Lights (LED) ..... 45
Power Indicator (LED) ..... 45
Error Indicator (LED) ..... 45
Paper Indicator (LED) ..... 45
Typical operation LED indications ..... 46
Fault Indicators ..... 46
Fully-recoverable and Status ..... 46
Semi-recoverable ..... 46
Non-recoverable ..... 46
Error Blink Codes ..... 47
Power Saving Modes ..... 47
OFF ..... 47
Sleep ..... 47
Green/Standby ..... 48
Testing the Printer Overview ..... 49
Using Self-Test, Configuration, and Hex Dump Mode ..... 49
Entering Self-Test, and Configuration mode ..... 49
Testing the printer ..... 49
TEST-Receipt ..... 49
TEST-Head Test ..... 49
Maintaining the Electronic Journal ..... 50
Configuring Options ..... 50
TEST- Configuration ..... 50
Factory Test ..... 50
Hex-dump Mode ..... 51
Entering Hex-dump Mode ..... 51
Hex-dump format ..... 51
Hex-Dump by command ..... 51
Level 0 Diagnostics ..... 51
Cold Power On ..... 51
Boot Loader Maintenance Mode ..... 52
Configuring Your Model 9000 Printer ..... 53
Configuration Mode Overview ..... 53
Most Frequent Configuration Incompatibilities ..... 53
Parallel Printer ..... 53
Serial Printer ..... 53
How to Change Configuration Settings ..... 53
Entering into Configuration Mode ..... 53
Entering into Configuration Mode (Alternate) ..... 53
Using Configuration Mode ..... 53
Remote Configuration ..... 54
Configuring Paper Types ..... 55
Setting up for Color Paper ..... 56
Setting up for Top of Form Marks ..... 57
Configuring the printer for Top of form marks ..... 57
Configuring various emulations ..... 59
Configuring USB options ..... 60
Other Options ..... 60
Programming Codes ..... 61
Control Codes Overview ..... 61
Nomenclature ..... 61
Standard Emulation ..... 62
IPCL Codes ..... 62
EPOS Emulation ..... 62
Axiohm ..... 62
Ithaca ${ }^{\circledR}$ Microline Emulation ..... 62
Application Development ..... 62
Ithaca Control Codes and Commands ..... 63
PcOS Printer Control Codes ..... 63
Quick PcOS Reference Chart ..... 63
Low Level Paper Motion Control ..... 69
Print/Paper Motion ..... 69
Horizontal Motion Control ..... 69
Vertical Motion Control ..... 72
Feed to Black Dot ..... 77
Black Dot Calibration ..... 78
Character Pitch ..... 79
Character Font ..... 82
Character Sets and Code Pages ..... 84
Codepage description files ..... 84
Double-Byte and Multi-Byte Code Page Description Files ..... 86
Code page selection ..... 86
Print Control Characters ..... 91
User Defined characters ..... 91
Character Attributes ..... 92
Page Mode ..... 98
How to use page mode ..... 98
Page Definition ..... 98
Auto-cutter and page mode ..... 99
Mechanism commands in page mode ..... 99
Stopping page mode definition ..... 99
Printing the page ..... 99
Page mode commands ..... 99
Graphic Modes ..... 108
Standard APA Graphics ..... 108
Extended APA Graphics ..... 109
Horizontal Graphics (Raster/Color/Gray Graphics) ..... 112
Graphics Compression ..... 114
Simple Raster Graphics ..... 115
Bitmap Graphics File Support ..... 116
User Store (Graphic Save) ..... 119
Defining Macros ..... 119
User-Store Commands ..... 121
User Macros ..... 126
Programming Considerations ..... 126
Bar Codes ..... 128
Barcodes and Code Pages ..... 130
Barcodes and Unicode ..... 130
Linear Barcodes ..... 131
Code-39 and Code-39 Extended ..... 131
Code 128 (Code-128(A,B, and C)) ..... 133
Code 128 Auto Encoding ..... 136
Interleaved 2 of 5 (Code 2 of 5) ..... 137
UPC A ..... 137
UPC E ..... 138139
EAN-8 ..... 140
EAN-14 ..... 140
ITF-14 ..... 141
EAN 2 and EAN 5 Addenda barcodes ..... 141
Code 93 ..... 142
Codabar ..... 142
DataBar (RSS) GS-1 barcodes ..... 143
GS1-Databar-14 (GS1-Databar-Omni-directional) ..... 144
GS1-Databar-Truncated ..... 145
GS1-Databar-14 Stacked and GS1-Databar-14 Stacked-Omni ..... 145
GS1-Databar-Limited ..... 146
GS1-Databar-Expanded ..... 147
GS1-Databar-Expanded Stacked ..... 147
EAN-128 (GS1-128) ..... 148
2D Barcodes ..... 149
Code 49 ..... 149
Code 16K ..... 150
PDF 417, Truncated PDF417 and Micro PDF 417 ..... 151
PDF 417 ..... 151
Truncated PDF 417. ..... 152
Micro PDF 417 ..... 153
Data Matrix Bar Code ..... 154
Data Matrix Encoding ..... 154
Data Matrix ECC200 ..... 154
Data Matrix Commands ..... 155
Testing Data Matrix barcodes ..... 155
Maxicode ..... 156
Maxicode Commands ..... 157
MaxiCode Mode 2 and 3 Structured Carrier Message ..... 157
QRCode ..... 159
QRCode Commands. ..... 160
Micro QRCode ..... 161
Micro QRCode Commands ..... 161
Aztec ..... 162
Aztec Commands ..... 163
Code One ..... 164
Composite Barcodes ..... 165
Composite data ..... 166
UPC A Composite ..... 166
UPC E Composite ..... 167
EANX Composite ..... 167
EAN GS1-128 Composite ..... 168
GS1-Databar-14 Composite ..... 168
GS1-Databar-Truncated Composite ..... 169
GS1-Databar-Limited Composite ..... 169
GS1-Databar-Expanded Composite ..... 170
GS1-Databar-14 Stacked Composite ..... 170
GS1-Databar-Stacked Omni Composite ..... 171
GS1-Databar-Expanded Stacked Composite ..... 171
GS-1 Barcodes ..... 172
GS-1 AI definitions ..... 173
Mandatory AI Associations ..... 177
Invalid AI associations ..... 179
GS-1 Al fields with a Check Digit ..... 180
Controlling Barcodes ..... 181
Unified Commands ..... 181
Barcode Control Summery Chart ..... 183
PDF417 Print Options ..... 184
Data Matrix Print Options ..... 186
Code 49 Print Options ..... 187
Code 16K Print Options ..... 188
QRCode Print Options ..... 189
Maxicode Print Options ..... 190
Aztec Print Options ..... 191
Code One Print Options ..... 192
Databar (RSS) Print Options ..... 193
Composite Barcode Print Options ..... 194
Legacy Commands ..... 195
Identifying Barcode Processing Errors ..... 197
Miscellaneous Printer Control ..... 199
USB Recovery Watch Dog ..... 207
Printer Status ..... 209
Status Inquire ..... 209
Serial and USB Mode Inquire ..... 209
IEEE 1284 Mode Inquire ..... 209
Inquire Commands ..... 210
ESC/POS ${ }^{\text {TM }}$ Codes ..... 226
Differences between Epson TM T88V and Model 9000 ..... 226
Page Mode ..... 226
Undocumented Epson Commands ..... 226
Barcodes ..... 226
Real-time Status ..... 226
Epson Licensed Firmware ..... 227
Model 9000 Citizen Emulation ..... 227
Model 9000 Star Emulation ..... 227
Model 9000 Axiohm Emulation ..... 227
Model 9000 Graphics ..... 228
Printing Graphics ..... 228
Character Graphics ..... 228
APA Graphics ..... 230
Procedure for APA graphics: ..... 230
Color Graphics ..... 230
Procedure for color horizontal graphics: ..... 231
Model 9000 Universal Color Graphics ..... 233
Print File Graphics ..... 233
To generate a print file. ..... 233
Store Graphics in the printer: ..... 234
To Store a graphic in the printer ..... 234
Print a stored graphic ..... 234
Generate a file to store graphics into a printer ..... 234
How universal graphics is done ..... 236
How to use IPCL commands in text strings ..... 236
Load and store named graphic image ..... 236
Recall and print stored named graphic image ..... 237
Cautions ..... 237
Universal Color Command Descriptions ..... 237
Model 9000 Coupon-Cut-Logo Feature ..... 240
Scalable Fonts ..... 241
Character Generation ..... 241
Outline characters ..... 241
Stroke-based characters. ..... 241
Character Definition ..... 242
Character Size ..... 243
Selecting Character Size ..... 243
Legacy or Classic Method ..... 243
Line spacing ..... 244
Selecting character size by points. ..... 244
Diacritical Marks ..... 244
Character Cache ..... 245
Stacked or Linked fonts ..... 245
Bitmap Fonts ..... 246
Custom Fonts ..... 247
Internal Fonts ..... 247
Font Storage ..... 248
Font Control Commands ..... 249
Font Size and Spacing ..... 249
Font Size and Spacing command interactions ..... 251
Unicode ..... 259
Unicode Encoding ..... 259
UTF-32 ..... 259
UTF-16 ..... 260
Unicode Extended UTF16 Encoding Example ..... 260
UTF-16 ..... 261
UTF-8 ..... 261
UTF-8TXT ..... 261
Unicode UTF8 Encoding Example ..... 262
Unicode Encoding Control Commands ..... 262
Legacy Printer Features that Have Changed ..... 266
Barcode enhancements ..... 266
Graphics. ..... 266
Dynamic code page definition ..... 266
USB 2.0 ..... 267
Ethernet ..... 267
File System ..... 268
File System Interface ..... 268
File System commands ..... 269
File system Support ..... 275
POR.INI file ..... 276
Model 9000 Extended Printer Control ..... 279
Model 9000 Internal Logs ..... 279
Model 9000 Dynamic Configuration ..... 282
Model 9000 Green and Sleep Power Control ..... 284
Communications ..... 286
Protocol and Print Buffers ..... 286
USB ..... 289
Powered USB ..... 289
USB Support ..... 289
USB DFU ..... 289
USB Problems ..... 290
USB Enumeration Issues ..... 290
USB Drops and disconnects ..... 290
Input Buffer size ..... 290
Ethernet TCP/IP ..... 291
Print Server Features Standard Ethernet Connection ..... 291
Supported Protocols ..... 291
User Interface/Configuration ..... 291
Other ..... 291
Ethernet Plug and Play ..... 292
Parallel Port ..... 293
Parallel Port Protocol ..... 293
Printer Buffer Size ..... 294
Parallel Port Inquire and IEEE 1284 ..... 294
IEEE 1284 Response Buffer ..... 295
Mode 4 ..... 295
Mode 0 ..... 295
Time-outs ..... 295
Active State ..... 295
Inquire Responses ..... 296
Parallel Port Plug and Play ..... 297
OPTS Field Description ..... 297
Serial Port ..... 298
Serial Port Protocol ..... 298
Print Buffer Flow ..... 300
Printer Buffer Size ..... 302
Serial Mode Plug and Play ..... 302
Using DSR ..... 302
Serial Device Identification ..... 303
Serial Port Inquire ..... 303
Parallel Port Inquire ..... 304
Display Pass Through ..... 305
Remote Printer Reset ..... 306
Reset in Serial, USB and Ethernet Mode ..... 306
Reset in Parallel Mode ..... 306
Miscellaneous Communication Features ..... 307
Power-cycle Recovery ..... 307
Data Pass-through ..... 307
Multi-drop Configuration ..... 307
Off-line Active ..... 308
Recovery from Mechanical Errors ..... 309
Programmer's Notes ..... 310
Appendix A: CRC16 ..... 311
Appendix B: USB Printer Class Support ..... 312
USB Printer Class 7 Specification ..... 312
GET_DEVICE_ID (bRequest = 0) ..... 312
GET_PORT_STATUS (bRequest = 1) ..... 312
SOFT_RESET (bRequest = 2) ..... 313
Class 7 USB Interface ..... 313
USB Class Definitions for Communication Devices (CDC) ..... 314
USB Class 2 Abstract Control interface ..... 314
USB Transact Virtual Serial port. ..... 316
Appendix C: Internal Code Pages ..... 317
Appendix D: ASCII Code Table. ..... 318
Appendix E: Unicode Character Addresses ..... 319
Appendix F: WGL4.0 Character Addresses ..... 321
Appendix G: GB18030 Character Addresses ..... 325
Appendix H Windows 1252 Latin 1 ..... 333
Index ..... 335

## Figures

Figure 1 Receipt Printing, Tear off Position ..... 27
Figure 2 Top of Form Marking requirements ..... 28
Figure 3 Cash Drawer Pin Definitions ..... 35
Figure 4 Windows Print Driver ..... 42
Figure 5 OPOS or UPOS ..... 43
Figure 6 POSPrinter OCX ..... 44
Figure 7 Top of Form Marking requirements ..... 57
Figure 8 Page Mode Entry Orientations ..... 98
Figure 9 Page mode set printable area ..... 102
Figure 10 Default Page mode printed area ..... 102
Figure 11 Defined Page mode printed area ..... 103
Figure 12 Code 39 Example ..... 131
Figure 13 Code 39 Extended Example ..... 131
Figure 14 Code 39 full 128 character encoding ..... 132
Figure 15 Code 128 Manual Encoding Example ..... 133
Figure 16 Code 128 encoding values ..... 135
Figure 17 Automatic Encoding Example ..... 136
Figure 18 Code 128 FNC encoding ..... 136
Figure 19 Interleaved 2 of 5 Example ..... 137
Figure 20 UPC A Examples ..... 137
Figure 21 UPC E Zero Suppression Formats ..... 138
Figure 22 UPC E Examples ..... 138
Figure 23 EAN 13 Examples ..... 139
Figure 24 EAN 8 Examples ..... 140
Figure 25 EAN 14 Example ..... 140
Figure 26 ITF-14 Example ..... 141
Figure 27 EAN 2 and EAN 5 Addendas ..... 141
Figure 28 Code 93 Example ..... 142
Figure 29 Codabar Example. ..... 142
Figure 30 RSS-14 symbol representing (01)20012345678909 ..... 144
Figure 31 GS1-Databar 14 Example ..... 144
Figure 32 GS1-Databar 14 Truncated Example ..... 145
Figure 33 GS1-Databar 14 Stacked Example ..... 145
Figure 34 GS1-Databar 14 Stacked Omni Example ..... 146
Figure 35 GS1-Databar Limited Example ..... 146
Figure 36 GS1-Databar Expanded Example ..... 147
Figure 37 GS1-Databar Expanded Stacked Example ..... 147
Figure 38 GS1-128 Example ..... 148
Figure 39 Code 49 Example ..... 149
Figure 40 Code 16K Example ..... 150
Figure 41 PDF 417 Example ..... 151
Figure 42 Truncated PDF 417 Example ..... 152
Figure 43 Micro PDF 417 Example. ..... 153
Figure 44 Data Matrix Example ..... 155
Figure 45 ECC 200 reference symbol encoding "30Q324343430794<OQQ" ..... 155
Figure 46 Maxicode Symbol ..... 156
Figure 47 Data Maxicode Example ..... 157
Figure 48 QRCode Symbol ..... 159
Figure 49 QRCode Symbol for a URL ..... 160
Figure 50 Data QRCode Example ..... 160
Figure 51 Data Micro QRCode Example ..... 161
Figure 52 Aztec Symbol ..... 162
Figure 53 Data Aztec Example ..... 163
Figure 54 Aztec Rune Example ..... 163
Figure 55 Code One Example ..... 164
Figure 56 UPC A Composite Example ..... 166
Figure 57 UPC E Composite Example ..... 167
Figure 58 EAN-13 Composite Example ..... 167
Figure 59 EAN GS1-128 Composite Example ..... 168
Figure 60 GS1-Databar 14 Composite Example ..... 168
Figure 61 GS1-Databar Truncated 14 Composite Example ..... 169
Figure 62 GS1-Databar Limited Composite Example ..... 169
Figure 63 GS1-Databar Expanded Composite Example ..... 170
Figure 64 GS1-Databar Stacked Composite Example ..... 170
Figure 65 GS1-Databar Stacked Omni Composite Example ..... 171
Figure 66 GS1-Databar Expanded Stacked Composite Example ..... 171
Figure 67 ECC - 200 Size options ..... 186
Figure 68 Example of Character Graphics ..... 228
Figure 69 Example Commands for a Sample Receipt ..... 229
Figure 70 Sample Receipt ..... 230
Figure 71 Receipt with graphics ..... 232
Figure 72 Scalable font cell indexes ..... 242
Figure 73 Bit mapped font file format ..... 247
Figure 74 UTF-16 encoding example ..... 260
Figure 75 UTF-8 encoding example ..... 262
Figure 76 Typical POS System ..... 286
Figure 77 Host to Printer Link ..... 287
Figure 78 Printer Communications Buffer Flow ..... 288
Figure 79 Parallel-port Data Timing ..... 293
Figure 80 Parallel Port ACK Timing Options ..... 294
Figure 81 Serial Port Flow Control Using DTR ..... 298
Figure 82 XON/XOFF Serial Port Flow Control ..... 299

## Tables

Table 1 Print Specifications ..... 22
Table 2 Standard Power Input Requirements ..... 24
Table 3 Power Input Requirements with the 24 -volt DC Power ..... 24
Table 4 Paper Low adjustment ..... 27
Table 5 Standard USB Pin definitions ..... 30
Table 6 CyberData Powered USB 24V to 1x8 Cables ..... 30
Table 7 Powered USB Pin definitions ..... 30
Table 8 Parallel Interface Pin definitions ..... 31
Table 9 Serial Interface Pin definitions ..... 32
Table 10 Cash Drawer Pin Assignment ..... 35
Table 11 Serial interface pin out ..... 38
Table 12 Parallel interface pin out ..... 38
Table 13 Operating Mode Blink Codes ..... 46
Table 14 Error Blink Codes ..... 47
Table 15 Character Pitch ..... 80
Table 16 Inter-character Spacing ..... 81
Table 17 Language Table ID's ..... 87
Table 18 Euro Character Substitution Matrix ..... 89
Table 19 Encoding schemes for ECC 200 ..... 154
Table 20 RSS Characteristics Summary ..... 172
Table 21 RSS GS1 AI Codes ..... 176
Table 22 Mandatory AI Code Associations ..... 178
Table 23 Invalid AI Code Associations ..... 179
Table 24 Al's supported by automatic check digit generation ..... 180
Table 25 Barcode Control Commands ..... 183
Table 26 Paper Sensor stop printing Commands ..... 203
Table 27 Paper Sensor out of paper Commands ..... 204
Table 28 Print dots to characters per inch and points ..... 250
Table 29 Scalable font command interactions ..... 252
Table 30 Legacy font definition ID's ..... 257
Table 31 Character Pitch ..... 258
Table 32 UTF-16 bit field definitions ..... 260
Table 33 UTF-8 bit field definitions ..... 261
Table 34 System file extensions ..... 269
Table 35 File system status bit definitions ..... 272
Table 36 Totals register indexes ..... 280
Table 37 Parallel-port Timing ..... 294
Table 38 USB Class 7 Control pipe commands ..... 312
Table 39 Supported Class Specific Requests and Notifications ..... 314
Table 40 Supported Class Specific Requests ..... 314
Table 41 Line Coding Structure ..... 315
Table 42 Set control Line state ..... 315
Table 43 Serial state bit definitions ..... 315

## About the Model 9000 Printer

The Ithaca Model 9000 printer represents the very latest technology for use for thermal receipt printing for point-of-sale and retail environments. It builds upon the architecture of Ithaca's proven thermal printers, together with a host of features specifically designed to improve the performance of your receipt-printing applications, including:

- Crisp, clear receipt printing in either one or two colors
- Fast 11 inches per second print speed
- Rugged spill-resistant cover
- Large 4-inch paper roll capacity with drop-in loading
- Protected internal power supply
- Ethernet and USB interfaces
- Application-controllable buzzer
- Configurable cash drawer functionality

The Model 9000 also offers a wide range of programmable features, including color and font control, APA graphics support, bar codes, and support for multiple language character sets. These features let you quickly and easily integrate more layout and printing options than ever - while giving you the reliability, durability and uptime you have come to expect from Ithaca printers.

## Who Should Read This Guide?

This document provides information and programming specifications for programmers and/or operators who will integrate the Model 9000 printer into their operations.

## What Is Included in This Guide?

This Programmer's Guide includes information on the features and programming interface of the Model 9000 printer. It provides the following information to support your programming and implementation efforts:

- Warranty and technical support information.
- Specifications and functionality description.
- Programming information, including documentation of low-level and high-level command interfaces, as well as sample scripts to guide your own implementation efforts.

We want you to have a trouble-free implementation with your TransAct printer. For any issues not covered in this guide, quality technical support is available on-line at www.transact-tech.com, or by telephone at (607) 257-8901 or (877) 7ithaca. Consult the following pages for more details about our support services.

## Warranty Options

All Model 9000 printers come with a standard 24 -month standard warranty covering both parts and labor that starts upon shipment from the factory. An optional extended warranty, covering both parts and labor for an additional 12 months, may be purchased separately. For more information concerning the warranty options, please contact the Sales Department at TransAct's Ithaca facility. You are responsible for insuring any product returned for service, and you assume the risk of loss during shipment to Ithaca.
C.O.D. packages are not accepted and warranty repairs are subject to the terms and conditions as stated on the Ithaca warranty policy.

## Technical and Sales support

Your Ithaca printer is backed by the resources of TransAct Technologies, a global technology firm with dedicated technical support and sales assistance. Here is how we can help you:

## On-line Technical Support

Our web site at www.transact-tech.com is your on-line portal to obtaining technical assistance with your Ithaca printer. Click on Ithaca link and then the Technical Support link to find documentation for your Model 9000 printer, including a current copy of this Programmer's Guide.

Our on-line support site also includes a convenient e-mail assistance request form, where you can submit support requests 24 hours a day, and receive a return contact from a TransAct support technician during regular business hours.

## Telephone Technical Support

Live telephone support is available Monday through Friday from 8 AM to 5 PM Eastern US time, excluding holidays. We can provide general information about programming for your Model 9000 printer, technical support, documentation, or assistance in sending a printer for service. To obtain telephone support, call TransAct's Ithaca Facility at (607) 257-8901 and ask for Technical Support. To help us serve you faster, please have the following information ready when you call:

- The Model Number and Serial Number of the printer.
- A list of any other peripheral devices attached to the same port as the printer.
- What application software, operating system, and network (if any) you are using.
- What happened and what you were doing when the problem occurred.
- How you tried to solve the problem.


## Return Materials Authorization and Return Policies

If the technical support person determines that the printer should be serviced at our facility, and you want to return the printer for repair, we will issue you the Returned Materials Authorization (RMA) number that is required before returning the printer. Repairs are warranted for 90 days from the date of repair or for the balance of the original warranty period, whichever is greater. Please prepare the printer being returned for repair as follows:

- Pack the printer to be returned in the original packing material.
- Packing material may be purchased from TransAct's Ithaca Facility.
- Do not return any accessories unless asked to do so by a support technician.
- Write the RMA number clearly on the outside of the box.


## Service Programs

TransAct Technologies Incorporated has a full service organization to meet your printer service and repair requirements. If your printer needs service, please contact your
service provider first. If any problems still persist, you can directly contact the Ithaca facility's Technical Support Department at (607) 257-8901 or (877) 7ithaca for a return authorization. International customers should contact your distributor for services. TransAct offers the following service programs to meet your needs.

- Extended Warranty.
- Depot Repair.
- Maintenance Contract.
- Internet Support.


## Sales Support

To order supplies, receive information about other Ithaca products, or obtain information about your warranty, contact our Sales Department at the contact telephone or fax numbers listed below. To receive information on International distribution, visit our web site at www.transact-tech.com.

## Contact Information

TransAct Technologies Incorporated
Ithaca Facility
20 Bomax Drive
Ithaca, NY 14850 USA
Telephone
(877) 7ithaca or (607) 257-8901

Main fax
(607) 257-8922

Sales fax
(607) 257-3868

Technical Support fax
(607) 257-3911

Web site
www.transact-tech.com

## Model 9000 Specifications and Requirements



## Model 9000 Thermal Printer Models

- Model 9000-USB: USB interface printer
- Model 9000-P: parallel interface printer
- Model 9000-S: serial interface printer
- Model 9000-Ethernet interface.


## Standard Features

The following features are common to the entire family of thermal printers:

- Print Speed for text is 11 inches per second $(279 \mathrm{~mm} / \mathrm{sec})^{1}$
- 12.0 inches per second paper feed speed
- Selectable 1.57 or 3.15 inch ( 40 or 80 mm .) print zone
- $44 / 57$ characters per line ${ }^{2}$
- Built-in self-ranging External Power supply
- Clam-shell paper loading
- Single RJ11 cash drawer driver with status (Single RJ12)

[^0]- Parallel (25 or 36 pin), serial (9 or 25 pin) RS232C, USB, or Ethernet interface.
- Configurable receiver buffer
- Self diagnostics
- Set up and configuration utility program
- CPI selections from 8 to $30 \mathrm{CPI}^{3}$
- Paper Out sensor
- Multiple printer emulations: Ithaca PcOS, Star, Citizen, and Epson
- APA and Epson graphics
- Over 25 Bar Codes ${ }^{4}$ including 2D and Composite
- Resident Bitmap and TrueType Fonts.
- UTF or ASCII with code page Character addressing
- WGL4.0 Character set.
- Metal receipt tear off
- 8 dots/mm. thermal print head resolution
- ON/OFF switch located on side of printer
- Cable routing strain relief
- Power/Error/Paper LEDs
- Paper feed button
- Cover open button
- Spill resistant design vertical main PCB mounting
- 58 mm . or 80 mm . paper width
- 4.0 inch ( 101 mm .) Paper roll diameter
- Portrait/landscape printing under Windows
- Page mode printing
- Cover Open sensor
- Internal counters for hours on, cuts, print lines and errors
- 100 km print head life
- 60 million print line printer MCBF (excluding knife)
- Buzzer

[^1]
## General Specifications

## Printing Specifications

Printing method:
Vertical/Horizontal dot pitch:
Resolution:
Line feed pitch:
Print zone (maximum)
Print Speed (monochrome):
Print Speed (Adhesive backed)
Print Speed (two color):
Number of print elements:
Thermal Sensitive Line Dot System 0.125 mm .

8 dots per mm (203 DPI)
3.2 mm . (. 125 inches)

40 or 80 mm ( 1.57 or 3.15 inch)
11 inches per second
$6-8$ inches per second ${ }^{5}$
$4-6$ inches per second ${ }^{6}$
640 dots in-line ${ }^{7}$
640 dots
Table 1 Print Specifications
Note: This document is not the controlling document for print specifications, for print location, tolerances, or power requirements. The information specified here is to aid in program development.

[^2]
## Physical Characteristics





## Dimensions

| Max Dimensions |  |  |  |
| :---: | :---: | :---: | :---: |
|  | W | D | H |
| Dimensions in <br> inches | 6.25 | 8.50 | 5.87 |

## Weight

Approximate weight:
Shipping weight:
4.6 lb.
6.0 lb .

## Electrical Characteristics

## Internal AC Powered

The Model 9000 Printer is designed to be AC self-powered in domestic and international markets. The printer is equipped with a universal input power supply that is designed to operate worldwide without modification.

| Supply <br> Voltage <br> Rating <br> (VAC) | Supply <br> Voltage <br> Range <br> (VAC) | Frequency <br> (Hz) | Rated Power <br> (watts) | Idle Current <br> (amps) | Printing Current <br> (amps) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $100-240$ | $90-264$ | $47-63$ |  | 45 | $.1 \mathrm{~A} @ 120 \mathrm{VAC}$ <br> (am |

Table 2 Standard Power Input Requirements

## External Powered DC

Optionally, the Model 9000 Printer can be operated with 24 -volt DC power supplied from a host through a Powered USB interface.

| Supply <br> Voltage <br> Rating <br> (VDC) | Supply <br> Voltage <br> Range <br> (VDC) |  | Frequency (Hz) | Idle <br> Current <br> (amps) |
| :---: | :---: | :---: | :---: | :---: |

Table 3 Power Input Requirements with the 24 -volt DC Power
The Model 9000 can be configured to operate with various power supplies. If a DC power supply with less capability is used, the printer must be configured for reduced power and the printer will print slower.

[^3]
## Thermal Print Head

## Thermal Print Head Overview:

Number of heat elements:
Heat element pitch:
Print width (Max):
Print width (80mm paper):
Print width (58mm paper):
Print width (40mm paper):
Pulse Life:
Abrasion Life:
Vertical dot pitch
Operating Temperature
Humidity:

```
640
0.125 mm (8 dots/mm.)
80 mm. +/- 0.2 mm. (640 dots) }\mp@subsup{}{}{10
72 mm. +/- 0.2 mm. (576 dots)
56 mm. +/- 0.2 mm. (448 dots)
36 mm. +/- 0.2 mm. (288 dots)
100 million pulses
100 km.
0.125 mm (0.0049 inch) or 203 DPI
5-45 degrees C
10-90 % RH (non-condensing)
```


## Operation Precautions:

- Do not print without paper.
- Clean the head with ethyl-alcohol after power is removed from the printer. This will remove foreign particles or paper dust which may degrade print quality.
- Be sure to set the paper width in the printer's configuration to agree with the paper being used ( 40,58 or 80 mm width).
- When using auto width adjustment be sure to specify if 80 mm or 58 mm paper is to be used.
- Once narrow paper has been used, some part of the print head always contacts the platen. If 80 mm paper is used after setting up and running 40 or 58 mm . paper, the head may be affected. Changing the paper width from narrow to wide ( 40 or 58 to 80 mm .) may show printing defects. Once you set the paper width to narrow ( 40 or 58 mm .) you should not expect to go back to 80 mm without some print defects.

[^4]
## Media Specifications

## Receipt Paper

Paper feed method
Paper feed pitch
Monochrome
roll diameter
paper thickness
Paper Width
Core
Roll footage
Color ${ }^{11}$
roll diameter
paper thickness
Paper Width
Core

Friction feed
Default - $1 / 8$ inch
101.6 mm. (4.0 inches) Max.
0.05 to 0.09 mm . (. 002 to .0035 inches)
$57.5+/-.5 \mathrm{~mm}(2.26+/-.02$ inches) wide $79.5+/-.5 \mathrm{~mm}(3.13+/-.02$ inches) wide Inside diameter . 445 to .635 inches Outside diameter . 730 to .860 inches 400 feet (approximate)
101.6 mm. (4.0 inches) Max. 0.05 to 0.09 mm . (. 002 to .0035 inches)
$57.5+/-.5 \mathrm{~mm}(2.26+/-.02$ inches) wide $79.5+/-.5 \mathrm{~mm}(3.13+/-.02$ inches) wide Inside diameter .445 to .635 inches Outside diameter . 730 to .860 inches

## Liner-less ${ }^{12}$ Label Paper - Monochrome

roll diameter
paper thickness
Paper Width
Core
Adhesive backing:
Roll footage
101.6 mm. (4.0 inches) Max.
0.06 to 0.09 mm . (. 0025 to .0035 inches) $39.5+/-.5 \mathrm{~mm}(1.55+/-.02$ inches) wide $79.5+/-.5 \mathrm{~mm}$ ( 3.13 +/- .02 inches) wide Inside diameter . 445 to .635 inches Outside diameter .730 to .860 inches Stripe or patch. 270 feet (approximate)

## Paper Usage Precautions:

- The life of the thermal head, when two-color paper is used, is reduced to about half of the life when single-color thermal paper is used.
- Use of narrow paper for extended periods will prevent conversion to wider paper.
- Use only specified thermal paper. If other paper is used, print quality, head life, and cutter life may deteriorate.

[^5]
## Paper Out

A receipt paper out sensor is provided as a standard feature. It senses when there is approximately .5 inches length of paper left on the paper roll.

## Paper Low

A receipt paper-low sensor is provided as an optional feature. An operator adjustable paper-low assembly will be provided to allow the printer to sense when the paper roll diameter is between .94 to 1.29 inches (approximate). It is adjustable to compensate for various paper core dimensions.

| Paper Low Adjustment Settings | Approximate Paper Remaining <br> (in feet) | Paper Roll Diameter |  |
| :--- | :---: | :---: | :---: |
| UPPER LIMIT: 2 turns (counter clockwise) | $29^{\prime}$ | $1.29^{\prime \prime}$ |  |
| 1 turn (counter clockwise) | $23^{\prime}$ | $1.203^{\prime \prime}$ |  |
| FACTORY SETTING | $18^{\prime}$ | $1.1^{\prime \prime}$ |  |
| 1 turn (clockwise) | $13^{\prime}$ | $1.028^{\prime \prime}$ |  |
| LOW LIMIT: 2 turns (clockwise) | $8.5^{\prime}$ | $.940^{\prime \prime}$ |  |

Table 4 Paper Low adjustment

## Notes:

- These measurements are approximate. Paper roll used for testing had paper roll core outside diameter of .750 inches, and inside diameter is .625 inches. Results will vary depending on core O.D./I.D. dimensions.
- Paper roll core should meet or exceed paper width.
- Results based on thermal paper . 0025 inches thick.
- The receipt printable area is as shown in the following diagram.

RECEIPT PAPER RDLL


Figure 1 Receipt Printing, Tear off Position
The paper tear off is positioned 1 inch from the last line of print
Receipt Printing, Auto Cutter Position
A receipt auto-cutter is a standard feature with all Model 9000 Printers.
Cutter type
Rotary

Media width
Media thickness range
Cut to line of print
Cutter life
Partial Cut tab:
Cut time:
$3.13+/-.02$ inches ( $79.5+/-.5 \mathrm{~mm}$ )
0.0025 to 0.0035 inch
0.70 inch

1,000,000 cuts
.125 inches +/- .0625 inches (right edge of receipt)
Less than 350 milliseconds

Top of Form Marks
The Model 9000 is equipped with a top of form sensor. For this function to function correctly, the paper must have a top of form mark where the receipt is to be cut. The mark must be on the left back or the paper (When viewed from the front) and be at least $1 / 4$ inch wide and at least $1 / 2$ inch wide.


Figure 2 Top of Form Marking requirements
Note: The Black dot repeat length should be configured into the printer to prevent excessive paper being wasted during automatic black dot sensing.

## Buzzer

A buzzer is provided as a standard feature. It is triggered upon command from the host terminal to make a sound loud enough to be heard under noisy conditions. It will produce a sound pressure level of at least $90 \mathrm{dBA}, 1$ foot from the front of the printer.

## Cover Interlock

A paper cover interlock switch is provided as a standard feature. When the paper cover is open, the printer is off-line, and will not print.

## Display Pass Through

The display pass through feature allows a pole display to be interconnected with the printer. The printer is connected to a host system with a special serial cable. The host sends serial data to the printer and the printer sends serial data to the pole display. The printer does not provide power to the display. During normal printer operation, no data is passed to the display. In pass through mode, all received data is passed on to the display.

## Communications Interface

All Model 9000's are equipped with a USB 2.0 interface with provisions for an optional interface adapter that will support IEEE 128425 pin Parallel, IEEE 128436 pin Parallel, RS232 9 pin Serial, RS232 25 pin Serial, Powered USB or Ethernet 10/100-Base-T.

## USB Interface

The USB interface is a Version 2.0 High or Full Speed implementation. The USB interface is standard on all printers and implemented through a Standard Series "B" Receptacle as defined in the USB Specification. The printer is self-powered and does not draw power from the standard type B USB interface cable.

The Standard USB Type B connector has the following pin functions:

| Pin | Signal | Pin | Signal |
| :---: | :---: | :---: | :---: |
| 1 | Vbus (+5 V dc) | 3 | Plus data |
| 2 | Minus data | 4 | Ground |

Table 5 Standard USB Pin definitions
Note: The +5 power on the standard USB interface does not have enough power to run the printer.
Note: The Vbus signal may be used to place the printer in a low power mode, however, this requires the printer to be configured for Green operation.

## Powered USB Interface

The Model 9000 printer may be supplied with a powered USB interface as a factory installed option. The printer will be supplied with a standard 24 V inline 8 pin powered USB connector. See the Powered USB web site http://www.poweredusb.org/ for the Powered USB standards. Matching cables are available from TransAct or from CyberData. See http://www.cyberdata.net/products/cables/pusbcables/index.html for a list of cables available from CyberData.

| Voltage | Length | CyberData Part Number |
| :---: | :---: | :---: |
| 24 V | 1.2 M | 010617 |
| 24 V | 3 M | 010729 |
| 24 V | 3.8 M | 010694 |
| 24 V | 4 M | 010730 |

Table 6 CyberData Powered USB 24V to $1 \times 8$ Cables
The Powered USB inline 8 connector has the following pin functions:

| Pin | Signal | Pin | Signal |
| :---: | :---: | :---: | :---: |
| $1,3,8$ | Ground | 5 | Minus data |
| 2,7 | +24 V | 6 | Vbus (+5 V dc) |
| 4 | Plus data |  |  |

Table 7 Powered USB Pin definitions
Note: Printers with the powered USB interface are supplied without an internal power supply. No other interface adapter may be installed in these printers.

## Parallel Interface

Your printer features two parallel interface options:

- An IEEE 1284-A 25-pin, D-shell connector, with pin-outs that interface to a standard IBM PC parallel printer interface with a one-to-one cable.
- An IEEE 1284-B, which is a standard Centronics 36-pin connector.

Both interface cards provide a dual cash drawer interface. The following table lists interface signals and corresponding pins.

| 25-pin Connector | 36-pin <br> Connector | Signal | Description |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Pin 1 |  |  | Host to Printer |
| Pin 1 | Pins 2-9 | D0 - D7 | Data | Host to Printer |
| Pins 2-9 | Pin 10 | ACK | Printer accepted data | Printer to Host |
| Pin 10 | Pin 11 | BUSY | Printer busy | Printer to Host |
| Pin 11 | Pin 12 | PE | Paper Out/Status | Printer to Host |
| Pin 12 | Pin 13 | SLCT | Printer selected | Printer to Host |
| Pin 13 | Pin 14 | AUTOFD | Autofeed paper | Host to Printer |
| Pin 14 | Pin 32 | FAULT | Printer error | Printer to Host |
| Pin 15 | Pin 31 | INIT | Initialize printer | Host to Printer |
| Pin 16 | Pin | SLIN | Select printer | Host to Printer |
| Pin 17 | Pin | FG | Frame ground | Printer to Host |
|  | Pin 18 | $+5 V$ | Peripheral logic high | Printer to Host |
| - | Pins 16, 19-30 | GND | Ground |  |
| Pins 18-25 |  |  |  |  |

Table 8 Parallel Interface Pin definitions

## Signal Levels

Voltage levels
Logic levels
Logic one
Driver
Receiver
Logic zero
Driver
Receiver
Current requirements

| Logic one | Source |
| :--- | :--- |
| Logic zero | Sink |

Line termination
Data and control
Strobe

0 V and +5 V (nominal)

$$
\begin{aligned}
& +2.4 \mathrm{~V} \text { to }+5 \mathrm{~V} \\
& +2.0 \mathrm{~V} \text { to }+5 \mathrm{~V}
\end{aligned}
$$

0 V to +0.4 V
0 V to +0.8 V
0.25 ma at +2.4 V 16 ma
3.3k ohm to +5 V
1.2 k ohm to +5 V

## RS-232 Serial Interface

## Serial Port Features

The serial port features are as follows:

Baud Rates Bit Patterns Flow Control

300, 600, 1200, 2400, 4800, 9600, 19.2K, 38.4K, and 57.6K
8-bit no parity; 8-bit odd; 8-bit even; 7-bit no parity; 7-bit odd; 7-bit even DTR and XON/XOFF

| 9-pin | 25-pin | Signal | Description |
| :--- | :--- | :--- | :--- |
| Pin 1 | Pin 8 |  | Not Connected |
| Pin 2 | Pin 3 | RX | Receive Data |
| Pin 3 | Pin 2 | TX | Transmit Data |
| Pin 4 | Pin 20 | DTR | Data Terminal Ready |
| Pin 5 | Pin 7 | GND | Signal Ground |
| Pin 6 | Pin 6 | DSR | Data Set Ready |
| Pin 7 | Pin 4 | RTS | Request to Send |
| Pin 8 | Pin 5 | CTS | Clear to Send |
| Pin 9 | Pin 11 |  | Not Connected |

Table 9 Serial Interface Pin definitions

## Signal Voltage and Current levels

The serial interface meets EIA RS232 interface specifications:

| Voltage Levels | Max | +-15 Volts <br> +- 3 Volts |
| :--- | :--- | :--- |
| Mark $=$ Off $=$ |  | -3 to -15 Volts |
| Space $=$ On $=$ |  | +3 to +15 Volts |

Because both the host and printer are DTE's (Data Terminal Equipment), they use the same serial port pin-outs. If the cable that is used to connect the host to the printer is a pin-to-pin inter-connect, it will not work. Therefore, a null modem or turn-around cable must be used to interconnect the host and the printer.

## Display Pass Through

The display pass through feature allows a pole display to be interconnected with the printer. The printer is connected to a host system with a special serial cable. The host sends serial data to the printer and the printer sends serial data to the pole display. The printer does not provide power to the display. During normal printer operation, no data is passed to the display. In pass through mode, all received data is passed on to the display.

## Ethernet 10/100-Base-T adapter

An IP addressable 10-Base-T Ethernet adapter is available for the Model 9000 printer. A user manual for this adapter is available from TransAct. The user's manual part number is 100-10938.

The adapter provides for web page configuration and supports bi-directional RAW and Telnet interfaces. All protocols are implemented to the extent necessary to support printing from Windows ${ }^{\text {TM }}$ platforms; specific protocols supported include the following:

- TCP/IP Port 9100 (RAW data)
- Line Printer Daemon Protocol (LPR)
- Hypertext Transfer Protocol (for configuration)
- UDP Port 9110 for real time status
- DHCP or IPv4 address assignment.
- SNMP RFC1213 ${ }^{13}$ for printer and network management


## General Ethernet Definitions

The Internet Protocol (IP) is the principal communications protocol used for relaying packets of information across an network. The IP is responsible for routing packets across network boundaries and is the primary protocol that establishes the Internet. IP defines addressing methods and structures for information encapsulation.

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet Protocol Suite. TCP is one of the two original components of the suite, complementing the Internet Protocol (IP), and therefore the entire suite is commonly referred to as TCP/IP. TCP provides the service of exchanging data directly between two network hosts, whereas IP handles addressing and routing message across one or more networks. In particular, TCP provides reliable, ordered delivery of a stream of bytes from a program on one computer to another program on another computer. Other applications, which do not require reliable data stream service, may use the User Datagram Protocol (UDP) which provides a datagram service that emphasizes reduced latency over reliability.

The Model 9000 uses TCP/IP port 9100 to connect the host system to the printer and then use the native printer protocol (sometimes referred to as Raw Data) to communicate with the printer. The host system opens a TCP/IP connection to the printer and by sending data to the printer on port 9100 and listening to returned information on port 9100 and send commands and data to the printer and receive status back.

The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol Suite. With UDP a computer applications can send and receive messages to and from other computers or devices using an Internet Protocol (IP) network without requiring prior communications to set up special transmission channels or data paths.

[^6]UDP uses a simple transmission model without implicit hand-shaking dialogues for providing reliability, ordering, or data integrity. Thus, UDP provides an unreliable service and information may arrive out of order, appear duplicated, or go missing without notice. UDP assumes that error checking and correction is either not necessary or performed in the application, avoiding the overhead of such processing at the network interface level. Time-sensitive applications often use UDP because dropping packets is preferable to waiting for delayed packets, which may not be an option in a real-time system.

UDP's stateless nature is also useful for servers answering small queries from huge numbers of clients (Model 9000 printers). Unlike TCP, UDP is compatible with packet broadcast (sending to all on local network) and multicasting (send to all subscribers). Common network applications that use UDP include: the Domain Name System (DNS), streaming media applications such as IPTV, Voice over IP (VoIP), File Transfer. UDP is used by the Model 9000 to support real time status monitoring.

The Model 9000 Ethernet Adapter supports the UDP protocol to handle printer status without the TCP-IP interface being open. When Activated the Ethernet Adapter will report printer status to the specified host without the TCP/IP link being open. The Ethernet Adapter uses IP port 9110 to report status and control the UDP interface. The Ethernet Adapter II supports 6 commands and 10 reports. Each command has an associated response report plus there are 4 additional printer status reports. See the Ethernet adapter user's manual (100-10938) for more information.

The default iTherm Ethernet Adapter's UDP IP port is 9110 however, this is configurable. At this time the UDP server in the iTherm Ethernet Adapter is similar to the UPnP service in that it does not require an exact match for source or destination IP addresses. It will respond to IP broadcasts, local subnet broadcasts, and the Ethernet Adapter's specific IP address. In addition the source port need not match the Ethernet adapters, provided that it is directed to the Ethernet Adapters UDP IP port.

The Hypertext Transfer Protocol (HTTP) is a networking protocol for distributed, collaborative, hypermedia information system. HTTP is the foundation of data communication for the World Wide Web.

The Model 9000 printer used HTTP to provice the ability to configure the Ethernnet interface adapter using any standard web browser.

The Dynamic Host Configuration Protocol (DHCP) is an auto configuration protocol used on IP networks. Computers that are connected to IP networks must be configured before they can communicate with other computers on the network. DHCP allows a computer to be configured automatically, eliminating the need for intervention by a network administrator. It also provides a central database for keeping track of computers that have been connected to the network. This prevents two computers from accidentally being configured with the same IP address.
In the absence of DHCP, the printer may be manually configured with an IP address.
A subset of the Simple Network Management Protocol (SNMP) printer MIB (RFC1213) is supported by the Model 9000 that will allow limited printer monitoring.

## Cash Drawer

## Interface Description

The Model 9000 Printer supports a single cash drawer with status. The driver in the printer is capable of supplying 24 V DC at up to 1.5 amps for up to 250 milliseconds. The Model 9000 Printer defines cash drawer closed as switch open. If the drawer is disconnected, it will be viewed by the printer as closed. Since the printer does not act on the cash drawer status, the application can interpret cash drawer status any way it wants.

Driver connector type (standard)
Driver voltage
Driver current
Pulse duration
Drawer status

Single RJ12 connectors with 24 V sink drivers
24 volts (Refer to power supply specification).
1 amp maximum with current limit
250 msec. maximum
Open/close drawer status provided to printer

## Cash Drawer Pin Assignments



Figure 3 Cash Drawer Pin Definitions

| Pin | Epson |  |
| :---: | :---: | :---: |
| Number | Signal Name | Direction |
| 1 | Drawer kick-out drive signal 2 | Output Sink Drive |
| 2 | Drawer open/close signal | Input |
| 3 | Signal ground |  |
| 4 | $+24 V$ DC |  |
| 5 | Drawer kick-out drive signal 1 | Output Sink Drive |
| 6 | Frame Ground |  |

Table 10 Cash Drawer Pin Assignment

## Setup

## Verifying the Configuration

Before you install a Model 9000 Printer into your system, you should verify that the printer is configured as required by your system. There are four parts to this verification process.

1. Verify that the communications interface card is the correct one.
2. Verify that the cash drawer interface is configured correctly.
3. Verify that the power connection is correct.
4. Verify that the firmware in the printer is configured correctly.

## Verify the Communications Interface Card

There are several basic types of interface cards, and each has variations. Make sure your printer has the correct interface card.

## USB Interface (Without interface card)

- Standard 4-pin


## Parallel Interface

- Centronics 36-pin interface
- 25-pin D shell

Serial Interface

- 9-pin D shell interface
- 25-pin D shell interface

Ethernet 10/100-Base-T Adapter

- Standard Ethernet port connector

It is easy to distinguish most of the interface cards other than the 25 -pin serial and 25pin parallel interface cards. To determine what interface is installed, refer to the configuration receipt shipped with the printer, or enter configuration mode and look at the verification printout. If a serial interface card is installed, the printout will refer to the RS232 serial interface. If the parallel interface card is installed, the printout will refer to the parallel interface.

## Changing Interface Cards

The interface card on the Model 9000 Printer can be added or changed in the field.
In most cases, interface cards are interchangeable without altering the printer firmware. However, you may have to load new firmware and/or a new boot loader before you change the interface cards. Check with Technical Support for firmware compatibility between interface cards before ordering.

Note: The USB interface does not require an interface card.

## Removing the Old Interface Card

1. Turn over the printer, taking care not to allow the cover to open or the paper to fall.
2. Disconnect the current communications and cash drawer cables.
3. Remove the interface retaining screws.
4. Remove the existing Adapter
a. Slide the interface card back and out of the printer.
b. If the printer is currently using the USB interface, there is no interface adapter and only the USB retaining bracket should be removed.
5. Install the new adapter
a. Sliding the new adapter into the interface adapter connector. Do not force it. It will install easily when aligned correctly.
b. If the new interface is to be USB, there is not adapter; however, the USB retaining bracket should be installed.
c. If the old interface was USB, there is an adapter cover that should be installed over the new interface adapter replacing the USB retaining bracket.

## Installing Cables

Three cables are required to be connected to the printer.

1. Power
2. Communications
3. Cash Drawer

## Connecting power

The Model 9000 Printer is generally supplied with a built-in power supply. As an option, the printer is available without a power supply when Powered USB is used.

Note: When a printer is configured to support the Powered USB interface, it is supplied without a power supply. The other interface adapters will not function.

## Connecting Communications Cables

The Model 9000 has a number of different communications interfaces.

## Serial

The serial interface connector is either a 9-pin or 25 -pin mail $D$ shell interface. The pinout is shown below

| 9-pin | 25-pin | Signal | Description |
| :--- | :--- | :--- | :--- |
| Pin 2 | Pin 3 | RX | Receive Data |
| Pin 3 | Pin 2 | TX | Transmit Data |
| Pin 4 | Pin 20 | DTR | Data Terminal Ready |
| Pin 5 | Pin 7 | GND | Signal Ground |
| Pin 6 | Pin 6 | DSR | Data Set Ready |
| Pin 7 | Pin 4 | RTS | Request to Send |
| Pin 8 | Pin 5 | CTS | Clear to Send |

Table 11 Serial interface pin out

## Parallel

The parallel interface connection is very similar to the serial interface connection. It can be a 36 -pin Centronics (IEEE 1284-B) or a 25 -Pin female D-Shell (IEEE 1284-A) connector. The pin-out of both connectors are shown below

| 25-pin <br> Connector | 36-pin <br> Connector | Signal | Direction |  |
| :--- | :--- | :--- | :--- | :--- |
| Pin 1 | Pin 1 | STROBE | Clock data to printer | Host to Printer |
| Pins 2-9 | Pins 2-9 | D0 - D7 | Data | Host to Printer |
| Pin 10 | Pin 10 | ACK | Printer accepted data | Printer to Host |
| Pin 11 | Pin 11 | BUSY | Printer busy | Printer to Host |
| Pin 12 | Pin 12 | PE | Paper Out/Status | Printer to Host |
| Pin 13 | Pin 13 | SLCT | Printer selected | Printer to Host |
| Pin 14 | Pin 14 | AUTOFD | Auto-feed paper | Host to Printer |
| Pin 15 | Pin 32 | FAULT | Printer error | Printer to Host |
| Pin 16 | Pin 31 | INIT | Initialize printer | Host to Printer |
| Pin 17 | Pin 36 | SLIN | Select printer | Host to Printer |
|  | Pin 17 | FG | Frame ground | Printer to Host |
| - | Pin 18 | +5V | Peripheral logic high | Printer to Host |
| Pins 18-25 | Pins 16, 19-30 | GND | Ground |  |

$$
\text { Table } 12 \text { Parallel interface pin out }
$$

USB
The USB connector can be one of two types: a standard Type B connector, as in commonly used in the PC industry, or a POS Powered USB connector. In the case of the powered USB connector, there are a number of different versions. Make sure you are using a 24 volt DC version, and the 24 volt supply meets the requirements of the Model 9000 printer and any cash drawer that is connected to the printer.

A powered USB interface is a special order option. There are several standards for the power interface. Make sure that you inform TransAct is aware of what interface you require, and that that interface connector is supported by the Model 9000.

## Ethernet

Connect a standard Ethernet cable to the Ethernet connection. Take care not to connect an Ethernet cable to the Cash Drawer connector.

## Verify the Firmware Configuration

An example receipt is Included in the box your printer shipped in that will show how the printer was configured before it shipped from our Ithaca facility. Compare this information to your system requirements. Pay attention to the emulation and the communications link. If they are wrong, the printer may appear inoperative. If the configuration is not correct, refer to the section on changing the Model 9000 configuration. If there are a number of printers to be installed and you want the identical configuration in each, you can use the universal configuration program to record the configuration on one printer, and replicate it over a group. The configuration program is available from TransAct technical support.

## Installing Paper

It is easy to install paper in the Model 9000.

1. Open the paper cover by grasping the green cover release between your thumb and forefinger, and squeeze the release. This will pop the cover up.
2. Open the cover and install a roll of paper with the paper coming off of the bottom of the roll.
3. Lay the paper tail over the front of the printer and center it over the paper path.
4. Close the cover. When the cover is closed, the printer will feed several inches of paper to make sure the paper is aligned in the printer. If equipped with a cutter, the printer will automatically cut the paper tail and the printer is now ready to print. If the printer is not equipped with a cutter, the operator should remove the paper tail.

## Auto Paper Sensing

The Model 9000 is equipped with the ability to sense and switch between Standard point of sale (POS) paper and NCR adhesive backed paper. It will also automatically switch between $80 \mathrm{~mm}^{14}$ paper and 40 mm paper.

How the printer prints on the different types of paper is configurable. There is a primary and alternate paper setup. The POS paper uses the primary values and the MCR paper uses the alternate values.

NCR adhesive backed paper uses black top of form marks on the back of the paper to allow the printer to align the paper cutter to cut between the black dots and make sure the paper drive is not left for extended periods on the adhesive patch. The black top of form mark is used to distinguish between standard POS paper and the NCR paper.

The printer also has a sensor that will detect when the printer is set for 40 mm paper. The printer will adjust to the 40 mm paper setting when the 40 mm insert is installed.

[^7]
## Printer Drivers and Printer Controls

## Definitions for terms you will see in this guide:

OS - The Operating System, which is the operating software underlying a computer system. Examples of OS's include Microsoft Windows ${ }^{\circledR}$ ( $9 x / \mathrm{Me} / 2000 / X P / W 7$ ), Linux, Unix, and OS2.

Application - A software program that a person uses to perform a function, such as a point of sale (POS) application. Also referred to as a program.

Driver - Software that makes hardware do something (something useful, we hope!). A driver translates (or converts) a software command to a command that specific hardware can understand. Types of drivers include printer drivers, port drivers, OPOS drivers, and USB drivers.

OCX/ActiveX - a software component that utilizes Microsoft's OLE (Object linking and embedding).

API - Application Programming Interface, or the language used to develop applications for devices such as printers. In the generic sense, the term "the API" refers to the Windows Operating System API. Types of APIs include Windows API, Visual Basic API, Delphi API, and MFC API.

## Windows Drivers

In some cases you may need to install one or more drivers to support the printer. Typically the driver will automatically be loaded by Windows, however in some cases you may have to manually load a device driver and or a printer driver.

## Windows Device Drivers

In some cases Windows may need a special driver to support the physical interface being used by the printer. In most cases the driver is already part of Windows but in some cases you may have to get it from the Microsoft web site.

Serial and parallel drivers are not supplied in some versions of windows as most new PC's don't have serial or parallel ports. It's possible that your system has serial and/or parallel ports but does not have Serial or parallel port drivers. You may have to load them from the Windows distribution CD.

The Windows USB driver is called USB Printing support and allows a Windows Printer Driver to communicate with the USB port. This driver provides a USB port interface to the printer as defined in the "Universal Serial Bus Device Class Definition for Printing Devices Version 1.1" (See Appendix B)

The Windows Virtual serial port driver is called. USB Modem Driver and it supports the USB CDC specification. (See Appendix B)

## Windows Printer drivers

There are several types of drivers that may be used to support the Model 9000 printer. One common driver is the Windows Printer Driver that supports a standard API to all
printing devices. Other drivers are OPOS (Unified POS/UPOS), or POSPrinter. It is also possible that your application communicates directly to the printer using a custom printer driver.

## OPOS (UnifiedPOS/UPOS)?

If you are using an application that is written to interface with the OPOS (OLE Point of Sale) standard, then the TransAct Technologies OPOS driver will allow you to communicate with most TransAct Technologies printers. The OPOS driver provides the mechanisms to print in all of the print modes supported by the printer.


Note: At this time the TransAct Technologies OPOS driver only supports Microsoft Windows operating systems.

Microsoft supports a Windows Printing API for Windows applications. This interface is intended to support typical Windows page printers, and has features such as begin document, end document, and tray selection. While this is not an ideal environment for a POS printer, there are cases where such functionality is required.

To support this environment TransAct Technologies provides a Windows print driver with extensions for POS, which may be downloaded and installed for most TransAct Technologies printers.

Please read the Ithaca Printer API documentation included with the driver. A POS printer is not the same as a typical consumer printer and requires unique consideration when using a Windows printer API interface.

## Windows Printer Driver

A Windows printer driver is a specific type of driver defined by Microsoft that the OS uses to translate drawing commands by a Windows application to a specific printer's command set. A standard Windows printer driver is a graphics page mode driver, and is not a POS (point of sale) driver. (Have you ever had to open a cash drawer that was connected to your printer at home?)

## PC Hardware



Figure 4 Windows Print Driver

## When to use a windows printer driver:

Use a printer driver when writing a program that uses the Windows API to send print information to the printer.

## When not to use a windows printer driver:

When a program wants to send printer command codes to the printer, or when a program wants to get information back from a printer.

## OPOS driver

An OPOS driver is an implementation of the UnifiedPOS (UPOS) specification.

It provides an application interface for retail devices such as a POS printer, scanner, cash drawer, pole display, MICR, scale, or others.

PC Hardware


Figure 5 OPOS or UPOS

## When to use an OPOS driver:

When an application is written that invokes the retail device functions based on the UPOS specification, in a vendor independent manner, OPOS can be used on the Microsoft Windows platform. It allows access to all the features of a retail device without having to deal with specific device commands. It also allows information to be retrieved from the retail device.

## When not to use an OPOS driver:

When the application is written using the Windows print API, and device specific commands are sent directly through the application to the device.

## POSPrinter ActiveX Control (POSPrinter OCX)

This is not a driver; but rather a software component that provides a connection from an application to a port driver. This allows an application to communicate "directly" with a printer. This approach allows an application to send commands to the printer if desired, similar to the legacy DOS approach once used to communicate with a POS printer.


Figure 6 POSPrinter OCX

When to use the POSPrinter OCX:
When the application writer wants complete control of what is sent to the printer. The application must take the responsibility of sending the correct codes to the printer as well as detecting error conditions, and graceful recovery from error situations.

When not to use the POSPrinter OCX:
When you do not want to deal with the low-level commands sent to the printer.

## Where to get more information

Additional information about Driver and support programs are available for your TransAct Sales representative, from

TransAct customer support or from the TransAct Technologies Web site.

## How to Operate the Model 9000 Printer

Your Model 9000 printer has a power switch, one button and three (LED) indicator lights. In addition to power control and feeding paper, these two buttons can be used to perform functions like self-testing, clearing errors and printer configuration. They are:

- POWER This is power off switch, located on left side of the printer's cabinet
- FEED Located on front left top corner of the printer.


## Power Switch

The power switch will turn the power off to the printer.

## Feed Button

The FEED button feeds paper through the printer. By pressing the FEED button momentarily, the paper will be fed one line at a time. Pressing and holding the FEED button will make the printer feed paper continuously until the button is released.

## Indicator Lights (LED)

The three Model 9000 indicator lights are:

- Power LED Green Indicates Power state and non-recoverable errors
- Error LED
- Paper LED

Red Indicates problems and probability of recovery
Green Indicates paper status (paper low)

## Power Indicator (LED)

The power indicator lets the user know that the printer is ON. If the power indicator blinks in conjunction with the error indicator, the printer is experiencing a nonrecoverable error: see the fault indicators discussed below. If the power indicator blinks and there is no error indicator blinking, the printer is being held in reset by the host.

## Error Indicator (LED)

The error indicator lets the user know that the printer is experiencing a problem. If the power indicator is lit (not blinking), the error is generally recoverable without data loss. If the power indicator is blinking, a non-recoverable error has occurred: see the fault indicators below. If the error is not operator recoverable, a power cycle may correct the problem. If a power cycle does not correct the fault, the printer must be serviced.

## Paper Indicator (LED)

The paper indicator signals the paper status. If the printer is equipped with a paper low option, the paper indicator will blink when the paper is low. The low sensor is adjustable, and the amount of paper remaining is dependent on the adjustment. If the paper indicator is lit with the error indicator, the printer is out of paper: in this case, the printer stops printing and waits for the paper to be changed.

## Typical operation LED indications

| Code | Paper | Error | Power |  |
| :--- | :---: | :---: | :---: | :--- |
| Normal | OFF | OFF | Very Slow <br> Blink | Indication during Normal <br> Operation <br> Printer is in a low power <br> saving mode. |
| Power Save | ON | ON | ON |  |
| Out Of Paper | Slow Blink | OFF | ON | Paper Low is an optional <br> feature |
| Low Paper | On/OFF | ON | ON | In some cases Paper Out <br> may also be indicated when <br> the cover is open. |
| Low Paper Error | Slow Blink | ON | ON |  |
| Cover Open | OFF | 4 Blink | Slow Blink |  |
| Printer Over <br> Temp | Slow Blink | OFF | 2 Blink | Power Problem |
| Power Bad | OFF | OFF | Fast Blink |  |
| Powering Down | Blink | OFF | ON |  |
| Low Electronic <br> Journal | OFF | OFF | Slow <br> Double <br> Blink | The printer has been placed <br> in Maintenance mode. |
| Maintenance <br> Mode |  | OF |  |  |

Table 13 Operating Mode Blink Codes

## Fault Indicators

The error indicator is the primary fault indicator, and is either always on or blinking if a fault has occurred. There are three types of faults:

| Fully-recoverable faults | Paper out or cover open |
| :--- | :--- |
| Semi-recoverable faults | Paper jam |
| Non-recoverable faults | Component failure |

## Fully-recoverable and Status

A fully-recoverable error will restart printing exactly where it stopped when the error occurred. Printing will resume after error has been properly addressed. A status recoverable error is very similar to a fully-recoverable error. Additionally, status is used to display when the printer consumables may need replacing.

## Semi-recoverable

A semi-recoverable error is determined by whether or not the printer has to be shut off and turned back on while attending to the problem. The amount of information lost is dependent on the type of error and the state of the information being processed.

## Non-recoverable

A non-recoverable error produces information loss.

## Error Blink Codes

If during normal operation, the error indicator is lit and the power indicator is blinking, a minor error occurred. The power indicator shows the error by blinking a pattern. Cycling the power restarts the printer. Blink patterns are defined as follows.


A similar pattern is followed for other blink counts. Error indications are as follows:

| Error Indicated | Blink Count |
| :--- | :--- |
| Print Fonts are Missing. | 1 |
| Configuration Read | 2 |
| Configuration Write | 3 |
| Software Error | 4 |
| Auto Cutter Error | 5 |
| Unused | 6 |
| User Store Format Error | 7 |
| Electronic Journal Format Error | 8 |
| Flash Operation Error | 9 |
| Internal Firmware load Error | 10 |
| Internal Font System Failed | 11 |
| Internal Memory Error | 12 |
| Communication Adapter Error | 14 |
| Operating System Error | 15 |
| Print Head Has Failed | 16 |
| The USB Subsystem Has Failed | 17 |

Table 14 Error Blink Codes

## Power Saving Modes

## OFF

In off mode, the Model 9000 enters a very low power mode where it consumes less than 1 watt of power. In this mode, the printer is effectively off and the communications interface is not active.

## Sleep

In Sleep mode, the Model 9000 printer enters a low power state where everything but the communications is disabled. In this mode, the printer may be reactivated by command or by pressing the Power Button. As the print head preheat is turned off, it may take a few seconds for the Model 9000 to warm up the print head in preparation for printing. This mode is activated by command only. (See page 284)

## Green/Standby

In Green mode, the Model 9000 printer enters a lower power state where everything including the communications is disabled. This mode is only available when the USB link is being used. The printer will enter and leave Green mode based on the Vbus signal on the USB link. This allows the printer to enter a low power state whenever the USB link is placed in a low power state.

The operational state of the Model 9000 can be determined by looking at the Power Indicator Light (LED). When the printer enters ON mode, the green power indicator light will be activated. When in Sleep mode, the Power Indicator Light (LED) will blink about every 3 seconds. In Green mode, the Power Indicator Light (LED) will blink about every 5 seconds.

## Testing the Printer Overview

## Using Self-Test, Configuration, and Hex Dump Mode

Self-Test Mode allows you to perform a series of tests to show if the printer is functioning correctly. Self-Test Mode also allows you to print a summary of how your Model 9000 is currently configured. Use this printout to compare your printer's settings to your system's requirements. Specific attention should be given to emulation and communications settings. For serial printers, the baud rate and other RS-232 interface settings are important. If there is a configuration problem, you should use Configuration Mode to make any changes necessary.

## Entering Self-Test, and Configuration mode

To enter self test and or configuration mode, perform the following sequence of operations:

1. Turn the printer OFF. (The power indicator light will be off.)
2. Press and hold the Feed button.
3. While holding the Feed button, turn the printer on.
4. When the red, error indicator light blinks, release the Feed button
5. Press and release the FEED button to run the indicated test.
6. Press and hold the FEED button until the green paper LED is illuminated to select the next test.
7. Press and hold the FEED button until the red error LED is I illuminated to exit self test mode.

The Model 9000 has a total of seven Self-Test and or configuration options. Two are designed to be useful when performing on-site print evaluations. One option allows the printers electronic journal to be maintained, one allows the printers configuration to be changed, and two are designed for factory setup by TransAct.

## Testing the printer

Use the following two TEST options when verifying basic printer operation.
TEST-Receipt
The receipt test is the primary test option to use when determining if the printer is functioning correctly.

The receipt test is mostly used during the early stages of troubleshooting, to eliminate the possibility that the problem is occurring with the printer. If the printer experiences a failure, and the error indicator light is activated, call TransAct's Ithaca Facility's Technical Support Department.

## TEST-Head Test

This test performs a test pattern that will print all the head print elements and verify that the drive roll is free from defects. The print head has two heating elements per dot position. A print element is not considered bad unless both elements are missing. If the head test shows that there is an inconsistency in the drive roll it may be debris or a void. If debris is indicated, cleaning the drive roll should correct the problem. If this does not correct the problem, contact TransAct's Ithaca Facility's Technical Support Department.

## Maintaining the Electronic Journal

The Model 9000 has an electronic journal option. It is possible to configure the printer with a journal station. This selection allows the information saved in the electronic journal to be printed and maintained by the operator.

Operation of this mode will be described later in the manual under Electronic Journal Operation.

It the Electronic Journal is unintentionally initialized, it may be deactivated by this option as well. If the Electronic Journal is password protected, the manual Electronic Journal option will be disabled.

## Configuring Options

The configuration option allows the configuration of the printer to be printed and, if necessary, changed. When configuration mode is entered, the current configuration, the Current User store status, and the current totals are printed. If any printer errors have occurred, a hardware and software error log may also be printed. At the end of the print out are instructions on how to use configuration mode. Please read these instructions carefully, as they are not the same as Self-Test. You may exit configuration mode at any time, without affecting the printer configuration, by pressing the power button.

## TEST- Configuration

The content of the configurable features will alter based on the hardware installed.
There will be at least three groups of options:

1. Emulation
2. Communications
3. General Options

Under emulation the instruction set or emulation of the printer may be changed. Available options will depend on the model of printer, however Ithaca PcOS is always available. Other options may be Epson TM88, TM90, Microline, and Ithaca M50.

Under Communications, the way the printer deals with the communications port can be adjusted. The printer will only show communications options that deal with the communications adapter installed.

Under General Options, all other configurable features of the printer can be adjusted. The default language, paper options, electronic Journal features, and print defaults may be set.

Details of all printer options and features will be discussed later in this manual.

## Factory Test

The printer is equipped with several factory test modes. These test options are only used for factory burn-in and testing.

TEST-Burn-in
TEST-Rolling ASCII

## Hex-dump Mode

Hex-dump mode is used to diagnose communication problems with the printer. As information is received by the printer, the information is converted to a Hex/ASCII format and printed. No translation is made, which means no commands are interpreted. All information is converted to Hex/ASCII and printed on the receipt tape. If a carriage return is sent to the printer, it is translated to OD in the hexadecimal field and "." in the ASCII field.

## Entering Hex-dump Mode

To enter hex-dump mode, perform the following sequence of operations:

1. Turn the printer off.
2. Press and hold the Feed button.
3. While holding the Feed button, while turning the printer on.
4. Hold the Feed button until the ERROR LED starts to blink. (Self test mode)
5. Continue to hold the Feed button until the ERROR LED starts to blink Slower. (Configuration mode)
6. Continue to hold the Feed button until the ERROR LED slows again.
7. Release the line feed button and the printer will enter Hex-dump mode.

## Hex-dump format

The format follows. (Note that the displayed value will be the input 8 bit value and not the Unicode value.)

| 0054 | 0068 | 0069 | 0073 | 0020 | 0069 | 0073 | 0020 | This is |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0061 | 0020 | 0074 | 0065 | 0073 | 0074 | 000 D | 000 A | a test.. |

Several indications of printer and host communication problems can be deduced from hex dump mode. If the printer is printing all 3 F "?" symbols, the parity or the number of bits is wrong. If the printer is printing 3 F "?" symbols when it should be printing other characters, the communications settings are probably incorrect, such as the parity, baud rate, or bit length setting. If the printer prints incorrect characters, like Hex C1 instead of Hex 41 "A", it is set for 8-bit data, and the host is set for 7-bit. In most cases, the print problem can be traced to the host and printer being configured differently.

## Hex-Dump by command

It is possible to enter hex-dump by command. (See page 281) In this mode, the printer will process status requests and the displayed value will be the Unicode value processed by the current state of the printer.

## Level 0 Diagnostics

Level 0 diagnostics always and only run at power up, e.g. power being applied. These diagnostics perform the following tasks:

## Cold Power On

1. Basic System Integrity
2. Vector Integrity
3. RAM Test
4. Flash Boot Loader Integrity
5. Flash Firmware Integrity (NOTE: If the firmware is corrupted, the printer will remain in boot load.)
6. Start Normal Firmware
7. Verify Configuration Integrity
8. Interface Card Configuration
9. User-store Integrity
10. Start Kernel, Verify Multitasking, Start Tasks

Once the kernel is running, the following tests must pass to allow operation. However, if any test fails (except the knife home test), the remaining tests will generate recoverable faults and normal operation will start as soon as the fault is cleared. These tests are also run when operation is resumed from OFF.
11. Cover Closed Check
12. Knife Home (if installed)
13. Paper Present
14. Place Printer On-line, Start Normal Operation

The first phase of testing consists of step 1-5, and determines that the boot loader is accurate and the printer firmware is correct. Tests 1 through 4 produce non-recoverable errors if they fail, in which case the power must be removed from the printer and the printer returned for service. If the boot loader is intact, but the main firmware is corrupted, the printer automatically enters boot loader mode, where the firmware can then be reloaded into the printer.

## Boot Loader Maintenance Mode

Maintenance mode supports firmware updates and other maintenance and configuration operations.

Maintenance mode may be entered by a series of host commands or it may be entered manually.

To manually enter the maintenance, hold the paper sensor down while the paper cover is open and turn the power switch on. Level 0 diagnostics will be run and the power indicator will display a very slow double blink pattern. If the error Indicator comes on, some type of level 0 error was detected. In maintenance mode, the firmware may be loaded or reconfigured and fonts added or changed. For a complete list of operations available refer to the maintenance mode programmer's guide.


The printer does not need to be functional for maintenance mode to function.

## Configuring Your Model 9000 Printer

## Configuration Mode Overview

There are two ways to configure the Model 9000 printer: the first is to use the manual configuration sequence by using the keypad controls, and the second is to use TransAct's remote configuration software. TransAct Technologies offers the use of a remote CONFIG program as a fast, easy way for system integrators to configure or reconfigure your Model 9000 printer. To obtain more information, or the latest version of the CONFIG program, call our Sales Department or Technical Support.

## Most Frequent Configuration Incompatibilities

## Parallel Printer

Emulation
Carriage Return Options

## Serial Printer

Emulation
RS-232 Serial Interface (baud rate)
Carriage Return Options

## How to Change Configuration Settings

## Entering into Configuration Mode

1) Press and hold the FEED button while powering on the printer. Wait for the RED indicator to blink and then release the FEED button.
2) Press and hold the FEED button until the Paper (Green) LED lights. Then release the FEED button. Repeat this process until the "Operation - Configuration" Prompt.
3) Press and Release the FEED button to enter Configuration mode.
4) You are now in Configuration Mode.

## Entering into Configuration Mode (Alternate)

To enter hex-dump mode, perform the following sequence of operations:

1) Turn the printer off.
2) Press and hold the Feed button.
3) While holding the Feed button, turn the printer on.
4) Hold the Feed button until the ERROR LED starts to blink. (Self test mode)
5) Continue to hold the Feed button until the ERROR LED starts to blink Slower.
6) Release the line feed button and the printer will enter Hex-dump mode.

## Using Configuration Mode

After you enter Configuration Mode, the printer will print the current configuration, the current totals and the error logs, if any. Save this printout as a guide to changing the configuration, and in case you wish to return the printer to the previous configuration.

Each emulation can have different configurable features. If you are changing the emulation, note that the printout that was printed at the beginning of the configuration process may be incorrect for the new emulation, and the configurable features may be different. If you are using this print out as a configuration guide, and you are changing the emulation, you may wish to save the new emulation and then re-enter Configuration Mode to change other options. This will print all the available features for the new emulation.

The Feed button is used to select and change configuration setting. By pressing and releasing the Feed button, the parameter to be changed can be selected. By pressing and holding the Feed button, the value of the selected parameter will change.


Note: There are a number of features that are configurable. It is intended that if you need to change them, you will contact TransAct Technical support for assistance.

## Remote Configuration

Remote configuration is provided for all printers, and is accessed through a series of extended diagnostic and configuration commands. The TransAct universal configuration program will allow the configuration to be read, edited, and written back to the printer. It will also allow the configuration of one printer to be recorded and replicated over a number of printers. The program is available from TransAct Technical Support or by downloading it from the Internet - consult the section On-line Technical Support for further details.

## Configuring Paper Types

The Model 9000 can be configured for various types of paper and the black dot sensor can be used to switch between two different types.

The following options control the paper types:

| Print Settings |  |  |  |
| :---: | :---: | :---: | :---: |
| Paper Type | Typical Black |  | Typical black POS paper. Prints at 12 IPS. |
|  | Typical Color |  | Typical color POS paper Prints at 6 IPS |
|  | Custom Black | Set red and black dot energy | Allows the energy and print speed to be adjusted but prints with only one color plain. |
|  | Custom Color | Set red and black dot energy | Allows the energy and print speed to be adjusted. |
|  | NCR ad | esive | Sets the printer to print optimally on NCR adhesive paper. Prints at 6 IPS |
|  | Custom | Adhesive | Sets up for adhesive paper but allows the energy and speed to be set. |
|  | Generic | Gray | Sets the printer to print standard POS paper with a gray scale. Prints at about 6 IPS. |
|  | Custom Gray | Set red and black dot energy to adjust the gray levels. | Sets the printer with a gray scale but allows the energy and speed to be adjusted. |
| Alt Paper type | See paper type above |  | Sets the alternate paper type |
| Secondary Color | None <br> Red <br> Green <br> Blue |  | Set the printer to process color paper by selecting the alternate color of the paper. |
| Speed Override | From Paper or from 1 to 15 IPS |  | The printer may be slowed down to better develop some paper types. Setting the printer to greater than 12 IPS is not recommended |
| Alt Speed Override | From Paper or from 1 to 15 IPS |  | Sets the alternate paper speed. |
| High Limit | 50 to 70 degrees C |  | Sets the point where the printer will stop. Never set this higher than 65 however if you have sensitive paper, you may wish to lower this to 55 or 60 Degrees C |
| Default Line Height | $\begin{array}{\|l\|} \hline 6 \\ 7.5 \\ 8 \\ \hline \end{array}$ |  | Sets the default lines per inch. <br> 8 is the most paper efficient. 7.5 or 6 may be used if desired. |
| Default CPI | 10 to 30 CPI |  | Sets the default characters per inch. Values from 12 to 17 produce good print depending on the character size |


| UTF Encoding | ASCII <br> UTF-8 <br> UTF-8 Characters only <br> UTF-16 Auto <br> UTF-16 Big Endian <br> UTF-16 Little Endian <br> UTF-32 Auto <br> UTF-32 Big Endian <br> UTF-32 Little Endian | Sets the default Encoding mode <br> Auto modes require that a Unicode byte <br> order mark be sent to the printer so that <br> determined. byte order can be |
| :--- | :--- | :--- |
| Code page default | Typically 437 or 1252 |  |
| Default Font | The default code page used for ASCII <br> dots |  |
| Barcode scale 15 | 1 to 6 X | Thcoding. (NOT USED if UTF encoding <br> is active.) |

## Setting up for Color Paper

The Model 9000 may be configured to print two color thermal paper. For good print quality, the printer should be optimized to print on the color paper being used.

When setting the color energy, start with a red setting of about 0.12 and a black energy of 0.24 . First, adjust the black level to produce acceptable black print then increase the red to produce acceptable red. Don't do too high on the red or the paper may turn black over time.

DO NOT EXCEED $0.40 \mathrm{~mJ} / \mathrm{sq} . \mathrm{mm}$, or the paper may adhere to the print head and cause paper jams. Setting the Black energy too high will also slow the printer down. All color papers tested by TransAct will operate with black levels less than $0.35 \mathrm{~mJ} / \mathrm{sq} . \mathrm{mm}$. When the Black energy is set, adjust the Color value for acceptable color.
NEVER exceed the Black energy with the Color energy. The color level can be very critical. Do not attempt to make the color darker by increasing the energy to the point where black starts to appear, the print quality will not be consistent.

## Setting up for Top of Form Marks

The Model 9000 is equipped with a top of form sensor. For this function to function correctly, the paper must have a top of form mark where the receipt is to be cut. The mark must be on the left back or the paper (When viewed from the front) and be at least $3 / 8$ inch high and at least $1 / 2$ inch wide. There must be no other marks in the clear zone.


Figure 7 Top of Form Marking requirements

## Configuring the printer for Top of form marks

The top of form options are:

| Top Of Form Options |  |  |
| :--- | :--- | :--- |
| Black dot Auto Detect | Inactive <br> Required <br> Auto Detect | Is black dot paper required, <br> never used, or should it be <br> automatically detected. |
| Format length | The maximum repeat <br> length | This should be set to a little <br> greater than the repeat length. |
| Seek POR | Enabled <br> Disabled | Should the receipt be <br> positioned at the black dot at <br> power up. |
| Seek on Cut | Enable <br> Sisable | Should the cut command <br> automatically seek the black |

\(\left.$$
\begin{array}{|l|l|l|}\hline & & \text { dot? } \\
\hline \text { Seek on cover Close } & \begin{array}{l}\text { Enable } \\
\text { Disable }\end{array} & \begin{array}{l}\text { Should the printer automatically } \\
\text { seek and cut the paper when } \\
\text { the cover is closed? }\end{array} \\
\hline \text { Alt Paper } & \text { Alternate } & \begin{array}{l}\text { If the printer has black dot } \\
\text { paper should it use the } \\
\text { Standard or Alternate paper } \\
\text { settings? }\end{array} \\
\hline \text { Dot Cal } & \text { Do not change } & \begin{array}{l}\text { Sensor calibration } \\
\hline \text { Black Dot Auto Cal } \\
\\
\hline \text { Enable } \\
\text { Disable } \\
\text { test automatically recalibrate } \\
\text { the sensor? }\end{array} \\
\hline \text { Dot Offset } & \begin{array}{l}\text { Enable } \\
\text { Disable }\end{array} & \begin{array}{l}\text { Should the self test black dot } \\
\text { test automatically measure the } \\
\text { dot size and repeat length and } \\
\text { configure the printer to cut on } \\
\text { the black dot. }\end{array} \\
\hline \text { OFS Cal } & \begin{array}{l}\text { Do not change if auto } \\
\text { measure is on. If not, } \\
\text { the relative offset to the } \\
\text { black dot. }\end{array} & \begin{array}{l}\text { This is typically automatically } \\
\text { set by the printer. If you do not } \\
\text { wish to cut at the black dot, you } \\
\text { should turn off all the auto } \\
\text { measure features and set this } \\
\text { value to cut the paper in the } \\
\text { correct location. }\end{array} \\
\hline \text { Print Settings } & \text { Do not change } & \begin{array}{l}\text { This is used by the auto } \\
\text { measure functions and this is } \\
\text { set based on the ability of the } \\
\text { top of form sensor to see the } \\
\text { paper. This is factory set. }\end{array}
$$ <br>
\hline Paper type \& The top to bottom width of the <br>
black dot in dots. In 203 per <br>

inch steps. 3/8 would be 76.\end{array}\right\}\)| Should the sensor be |
| :--- | :--- | :--- |
| recalibrated on every cover |
| close? |

## Configuring various emulations

The Model 9000 supports various printer emulations. Each manufacture of this type of printer provides their own and in some cases other companies printer emulations. There are variations to those emulations and the Model 9000 has some ability to adjust to those variations.

| Emulation Settings |  | Ithaca M280 <br> Epson TMTxx <br> ESC/POS <br> Axiohm 73XX <br> Star 600 or 700 <br> Citizen <br> Ithaca M50 <br> Ithaca Microline |
| :--- | :--- | :--- |
|  | TM-T85 <br> TM-T88II <br> TM-T88III <br> TM-T88IV <br> TM-T90 | Basic Product Emulation |
| Epson Model | 2 byte |  |
|  | 3 byte <br> Disabled | Epson model specific <br> variations |
| Epson ESC v Definition |  |  |
| Color |  |  |
| Inverse Video |  |  |

## Configuring USB options

The Model 9000 allows how the USB link works to be controlled.
The options are:

| USB Options |  |  |
| :---: | :---: | :---: |
| USB Speed | USB 2 | USB 2 speed is allowed if the host will allow it. |
|  | USB 1 Only | Operation at USB speeds are blacked. NOTE: USB 1 should only be used if the host system or other USB element has a problem with USB 2. |
| USB Mode | Printing device | Only a USB Class 7 device is supported |
|  | Virtual Com port | Only a Virtual Com port is supported using TransAct's TVS driver. NOTE: this is not recommended for new designs. |
|  | Composite | Both Class 7 and Virtual com are supported. Not recommended. |
| USB Enumeration | Use Serial Number | Each printer will be unique and more than one printer may be connected to each host. |
|  | Use description | All printers are the same and may be interchanged. Only one printer per host is supported. |
|  | None | No serial number field is returned and the enumeration is taken from the physical USB connection. |
| Green Mode | Disabled <br> 1 to 200 seconds | If the host is powered down the printer will also enter a reduced power mode after the delay specified. |

When USB is active, the input buffer must be at least as large as the USB packet size. For USB1.1, the packet size is 64 bytes. For USB 2.0 the packet size is 512 bytes. If the input buffer is configured for a value that is less than the packet size, The input buffer will be increased.

## Other Options

There are a number of other configurable options, however you should contact TransAct technical support for assistance.

## Programming Codes

## Control Codes Overview

This Programmer's Guide is designed to help users of the Model 9000 printer develop applications. Model 9000 Printers are specialized point-of-sale printers that have several features not normally found on general-purpose printers. Because of these special features, Model 9000 Printers have unique control codes. This programmer's guide documents the control codes that are unique to the Model 9000 Printer.

## Nomenclature

When describing control codes, confusion often occurs as to whether the description is decimal, hexadecimal, or ASCII. To minimize the problem, this programmer's guide uses the following nomenclature when describing control code sequences.
[ ] Encloses a control character. [ ] represents a single, 8-bit value as defined in the standard ASCII tables. The ASCII Code Table in Appendix $B$ lists the control codes. An example would be [ESC], which would represent a 1BH or 27 decimal.
$<>\quad$ Encloses an 8-bit value in decimal format. The value is from zero to 255. An example is $<2>$, which represents 02 H or 2 decimal.
<n> Indicates a variable parameter. The variable parameter, <n>, can have a value from zero to 255 . The meaning of <n> is described and defined in the description of the command.
$\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle \quad$ Indicates that there are two parameters, $\left\langle n_{1}\right\rangle$ and $\left\langle n_{2}\right\rangle$, where both can have values from zero to 255 .
$<\mathbf{m}_{1}><\mathbf{m}_{2}>$ Is an Ithaca ${ }^{\circledR}$ Printer Control Language (IPCL) parameter consisting of two digits where $<\mathrm{m}_{1}>$ and $<\mathrm{m}_{2}>$ are ASClI characters from zero to nine. The parameter is combined to form a value from zero to 99. If $\left\langle\mathrm{m}_{3}\right\rangle$ is included, the parameter is combined to be from zero to 999. If two values are specified, there must be two bytes added to the IPCL code. That is, if the command specifies $\left\langle m_{1}\right\rangle\left\langle m_{2}\right\rangle$ and the desired value is five, it must be specified as 05 .
$\mathbf{x} \quad$ All other characters in control strings represent ASCII characters. For example, [ESC] 1 represents 1 BH followed by 31 H .

In many cases, applications require that control sequences be specified in hexadecimal or decimal codes. In most cases, commands are specified in ASCII, hexadecimal, and decimal. The ASCII Code Table in Appendix B (page 318) lists ASCII, hexadecimal, and decimal equivalents.

## Standard Emulation

The standard control codes for the Model 9000 Printer are extensions and subsets of the PcOS IBM emulation provided on other Ithaca ${ }^{\circledR}$ products. In some cases, an application designed for a Series 50 Printer with IBM code sets will function with a Model 9000 Printer.

## IPCL Codes

Ithaca ${ }^{\circledR}$ Printer Control Language (IPCL) codes are part of PcOS and designed to control a printer without using control characters (i.e. characters less than 20H). Only the standard PcOS emulation supports IPCL.

In rare cases, an IPCL code will interfere with the text that is to be printed. The IPCL translator can be disabled with an [ESC] y $\langle 4>$ command.

## EPOS Emulation

ESC/POS ${ }^{15}$ is referred to here as EPOS. The Model 9000 Printer supports two Epson emulations. One emulation is for the TM-T88, and the other is an enhanced EPOS emulation that may help the Model 9000 replace other printers.

Specific EPSON compatibility features, such as its Automated Status Back (ASB) feature, are available as an option from TransAct Technologies. Command codes pertaining to these features are patented by Epson and require added cost licensed firmware.

It is intended that the standard Ithaca ${ }^{\circledR} \mathrm{PcOS}$ emulation be used for new applications. Not all features of Model 9000 Printers are supported by EPOS specifically, the ability to print color horizontal graphics.

## Axiohm

The printer contains an Axiohm A793 emulation that will allow the printer to replace an Axiohm thermal print in most applications. Note that the Model 9000 does not support the printer configuration commands provided in the A793 Printer. The Model 9000 should be configured through the keypad or with the TransAct configuration program.

## Ithaca ${ }^{\circledR}$ Microline Emulation

The Model 9000 printer supports several Microline emulations. These emulations allow the Model 9000 Printer to replace some older Ithaca ${ }^{\circledR}$ M50 printers with Microline commands. This emulation is not documented here. Refer to our Microline Emulation Programmer's Guide (12-03244) for more information.

## Application Development

To aid application development, several chapters in this manual are designed to help the programmer understand the Model 9000 Printer. The next chapter provides a detailed description of each of the commands. Subsequent chapters provide explanations of how the printer works, including a description of the internal print buffer, communications link, and interaction between the host computer and printer.

[^8]
## Ithaca Control Codes and Commands

Throughout this Programmer's Guide, charts and tables list commands and features. In most cases, the charts cross-reference the page that describes the command. Code summary charts, arranged by code and function, are provided to help quickly find commands.

## PcOS Printer Control Codes

The following section defines the Model 9000 Ithaca ${ }^{\circledR} \mathrm{PcOS}$ emulation. The native, Ithaca ${ }^{\circledR} \mathrm{PcOS}$ emulation provides the most flexibility and control over the printer. It is consistent with most previous Ithaca ${ }^{\circledR} \mathrm{PcOS}$ products, and should be used when the printer is placed in a new application.

One optional feature in the Model 9000 Printer is the ability to print color graphics. Due to the complexity of color graphics, TransAct provides several drivers to integrate into your application. TransAct does not recommend that you generate drivers. In addition, TransAct has created several tools that can be used to generate and maintain graphic images and files for print on the Model 9000. Information about drivers and tools are available on the TransAct web site. For additional information, contact Technical Support.

Quick PcOS Reference Chart

| Description | ASCII | Hex | IPCL equivalent code | Page |
| :---: | :---: | :---: | :---: | :---: |
| Low Level paper Motion |  |  |  |  |
| Line feed. | [LF] | OAH | \&\%LF | 69 |
| Carriage return. | [CR] | ODH | \&\%CR | 69 |
| Horizontal Motion |  |  |  |  |
| Back space. | [BS] | 08H | \&\%BS | 70 |
| Horizontal tab. | [HT] | 09H | \&\%HT | 69 |
| Set horizontal tab stops. | $\begin{aligned} & \text { [ESC] D <n1> <n2> ... } \\ & \text { <ni> <0> } \end{aligned}$ | 1BH,44H | none | 70 |
| Set horizontal position. | [ESC] n <n1> <n2> | 1BH,6EH | $\begin{aligned} & \& \% H P<m 1> \\ & <\mathrm{m} 2><\mathrm{m} 3> \end{aligned}$ | 71 |
| Set justification. <br> $\mathrm{n}=0$ Left <br> $n=1$ Center <br> $\mathrm{n}=2$ Right <br> $n=8$ Left (No line feed) <br> $\mathrm{n}=9$ Center (No line feed) <br> $\mathrm{n}=10$ Right (No line feed) | [ESC] a <n> | 1BH,61H | $\begin{aligned} & \text { \&\%JR }\{n=2\} \\ & \& \% J C\{n=1\} \\ & \& \% J L\{n=0\} \end{aligned}$ | 71 |
| Reset horizontal and vertical tab stops. | [ESC] R | 1BH,52H | \&\%HV | 70 |
| Set left/right print margins. $\mathrm{n}_{1}=$ Left margin, $\mathrm{n}_{2}=$ Right margin | [ESC] $\mathrm{X}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ | 1BH,58H | none | 199 |
| Select Minimum character Height and Width in points | [ESC] + P<w><h> | 1BH 50H | none | 255 |
| Select Minimum character Height and Width in $1 / 4$ points | [ESC] + p<w $<$ <h> | 1 BH 70 H | none | 256 |
| Vertical Motion |  |  |  |  |
| Perform a fine line feed. | [ESC] J <n> | 1BH,4AH | $\begin{aligned} & \left.\& \% \mathrm{FM}<m_{1}\right\rangle \\ & \left\langle\mathrm{m}_{2}\right\rangle\left\langle\mathrm{m}_{3}\right\rangle \end{aligned}$ | 72 |


| Description | ASCII | Hex | IPCL equivalent code | Page |
| :---: | :---: | :---: | :---: | :---: |
| Set 1/8-inch line spacing. | [ESC] 0 | 1BH,30H | \&\%ST | 72 |
| Set 7/72-inch line spacing. | [ESC] 1 | 1BH,31H | \&\%SG | 73 |
| Begin variable line spacing. (Enable [ESC] A <n>). | [ESC] 2 | 1BH,32H | none | 73 |
| Set variable line spacing to $\mathrm{n} / 216$ inch. | [ESC] 3 <n> | 1BH,33H | $\begin{aligned} & \begin{array}{l} \& \% \mathrm{SV}<\mathrm{m}_{1}> \\ <\mathrm{m}_{2}><\mathrm{m}_{3}> \end{array} \end{aligned}$ | 72 |
| Set variable line spacing to n/72 inch. | [ESC] A <n> | 1BH,41H | none | 73 |
| Feed <n> lines at current spacing. | [ESC] d <n> | 1BH,64H | $\begin{aligned} & \left.\& \% \mathrm{FL}<\mathrm{m}_{1}\right\rangle \\ & \left\langle\mathrm{m}_{2}\right\rangle \end{aligned}$ | 74 |
| Set vertical tab stops. | $\begin{aligned} & {[\mathrm{ESC}] \mathrm{B}<\mathrm{n}_{1}><\mathrm{n}_{2}>} \\ & <\mathrm{n}_{3}>\ldots<\mathrm{n}_{1}>0 \end{aligned}$ | 1BH,42H | none | 75 |
| Vertical tab. | [VT] | OBH | \&\%VT | 74 |
| Form feed. | [FF] | OCH | \&\%FF | 75 |
| Feed to black dot | [ESC][VT] | 1BH,0BH | None | 77 |
| Set top of form. | [ESC] 4 | 1BH, 34 H | \&\%TF | 75 |
| Set form length in lines. | [ESC] C <n> | 1BH,43H | $\begin{aligned} & \text { \&\%SL <m } \mathrm{m}_{1}> \\ & \left\langle\mathrm{m}_{2}\right\rangle \end{aligned}$ | 76 |
| Select Minimum character Height and Width in points | [ESC] + P<w><h> | 1 BH 50 H | none | 255 |
| Select Minimum character Height and Width in $1 / 4$ points | [ESC] + p<w><h> | 1BH 70H | none | 256 |
| Begin auto line feed. ( $n=0$, end $n=1$ ) | [ESC] 5 <n> | 1BH,35H | $\begin{aligned} & \& \% C A\{n=0\} \\ & \& \% M A\{n=1\} \\ & \hline \end{aligned}$ | 76 |
| Set form length in inches. | [ESC] C [NUL] <n> | 1BH,43H | $\begin{aligned} & \begin{array}{l} \& \% \mathrm{SI}<\mathrm{m}_{1}> \\ <\mathrm{m}_{2}> \end{array} \end{aligned}$ | 76 |
| Reverse line feed. | [ESC]] | 1BH,5DH | \&\%LR | 77 |
| Character Pitch |  |  |  |  |
| Set character spacing in points | [ESC]+1<n> | 1BH 2BH 49H | None | 253 |
| Set character spacing in $1 / 4$ points | [ESC]+i<n> | 1BH 2BH 69H | None | 254 |
| Set character spacing in points with adjustment | [ESC]+J<n> | 1BH 2BH 4AH | None | 254 |
| Set character spacing in $1 / 4$ points with adjustment | [ESC]+j<n> | 1BH 2BH 6AH | None | 255 |
| Begin 10 CPI character pitch. | [DC2] | 12H | \&\%F3 | 79 |
| Begin 12 CPI character pitch. | [ESC] : | 1BH,3AH | \&\%F2 | 79 |
| Begin 17 CPI character pitch. | [SI] | OFH | \&\%F1 | 79 |
| Set character pitch. | [ESC] [ P <n> | $\begin{aligned} & 1 \mathrm{BH}, 5 \mathrm{BH}, \\ & 50 \mathrm{H} \end{aligned}$ | \&\%F<n> | 80 |
| Set inter-character spacing. | [ESC] V <n> | 1BH,56H | none | 81 |
| Begin 24 CPI character pitch | [ESC][SI] | 1BH,0FH | \&\%F4 | 79 |
| Select Minimum character Height and Width in $1 / 4$ points | [ESC] + p<w><h> | 1 BH 70 H | none | 256 |
| Set left/right print margins. $\mathrm{n}_{1}=$ Left margin, $\mathrm{n}_{2}=$ Right margin | [ESC] $\mathrm{X}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ | 1BH,58H | none | 199 |
| Character Font |  |  |  |  |
| Select font | [ESC] + 3 <ID> | 1BH 2BH 31H | none | 249 |
| Select font by name | $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{N}} \\ & \text { Filename<0> } \end{aligned}$ | 1BH 2BH 4EH | none | 249 |
| Define Stacked Font | $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{S}\left\langle\mathrm{ID}_{1}\right\rangle} \\ & \left\langle\mathrm{D}_{2}>\ldots\right. \end{aligned}$ | 1BH 2BH 53H | none | 249 |
| Set stroke font Brush Size | [ESC] + B <W> | 1BH 2BH 42H | none | 256 |
| Select Minimum character Height and Width in points | [ESC] + P<w><h> | 1BH 50H | none | 255 |


| Description | ASCII | Hex | IPCL equivalent code | Page |
| :---: | :---: | :---: | :---: | :---: |
| Select Minimum character Height and Width in $1 / 4$ points | [ESC] + p<w><h> | 1BH 70H | none | 256 |
| Begin $12 \times 12$ draft print. | [ESC] \# <0> | $1 \mathrm{BH}, 23 \mathrm{H}, 00 \mathrm{H}$ | \&\%QT | 82 |
| $\begin{aligned} & \text { Set print quality mode. } \\ & n=0 \text { Draft }(12 \times 12) \\ & n=1 \text { Large draft }(12 \times 14) \\ & n=2 \text { NLQ }(24 \times 16) \\ & n=3 \text { NLQ }(24 \times 16) \\ & n=4-7 \text { Repeats } 0-3 \end{aligned}$ | [ESC] 1 <n> | 1BH,49H | $\begin{aligned} & \text { \&\%QT }\{n=0\} \\ & \text { \&\%QU }\{n=1\} \\ & \text { \&\%QL }\{n=2\} \\ & \text { \&\%QS }\{n=3\} \end{aligned}$ | 82 |
| Begin rotated font. (See command description). | [ESC] P <n> | 1BH,50H | $\begin{aligned} & \text { \&\%RI } \\ & \text { \&\%RF } \\ & \text { \&\%RN } \end{aligned}$ | 83 |
| Select character code page. | [ESC] [ $T<n_{n}><n_{1}>$ | $\begin{aligned} & \text { 1BH,5BH, } \\ & 54 \mathrm{H} \end{aligned}$ | $\begin{aligned} & \& \% C P<m_{1}> \\ & <m_{2}><m_{3}> \\ & <m_{4}> \end{aligned}$ | 87 |
| Insert Euro character. | [ESC] [ C <n> | $\begin{aligned} & \text { 1BH,5BH, } \\ & 43 \mathrm{H} \end{aligned}$ | \&\%EU | 89 |
| Print control character. | [ESC]^ $<n>$ | 1BH,5EH | $\begin{aligned} & \left.\& \% C C<m_{1}\right\rangle \\ & \left\langle m_{2}\right\rangle\left\langle m_{3}\right\rangle \end{aligned}$ | 91 |
| Redefine character set. | [ESC][S ... | $\begin{aligned} & \text { 1BH,5BH, } \\ & 53 \mathrm{H} . . . \end{aligned}$ |  | 90 |
| Define user-defined characters. | $\begin{aligned} & {[\mathrm{ESC}]=\langle\mathrm{y}\rangle\left\langle\mathrm{C}_{1}\right\rangle} \\ & \left\langle\mathrm{C}_{2}\right\rangle \ldots \end{aligned}$ | 1BH,3DH | none | 91 |
| Enable user-defined characters. | [ESC] > <n> | 1BH,3EH | none | 92 |
| Cancel user-defined characters. | [ESC] \$ | 1BH, 24H | none | 92 |
| Print control character. | [ESC]^ <n> | 1BH,5EH | $\begin{aligned} & \& \% C C<m_{1}> \\ & <m_{2}><m_{3}> \end{aligned}$ | 91 |
| Print Unicode character | [ESC] " <n $\mathrm{n}_{\text {L }}><\mathrm{n}_{H}>$ | 1BH,22H | $\begin{aligned} & \& \% \mathrm{PU}<\mathrm{m}_{1}> \\ & <\mathrm{m}_{2}><\mathrm{m}_{3}> \\ & <\mathrm{m}_{4}><\mathrm{m}_{4}> \end{aligned}$ | 91 |
| Character Attributes |  |  |  |  |
| Select color. | [ESC] c <n> | 1BH,63H | \&\%CL < $\mathrm{m}_{1}>$ | 92 |
| Begin one-line double-wide print. | [SO] | OEH | \&\%MW | 92 |
| Cancel one-line double-wide print. | [DC4] | 14H | \&\%MN | 93 |
| Multi-line double-wide double-high mode. $\mathrm{n}=0$ Standard mode <br> $\mathrm{n}=1$ Double-wide <br> $\mathrm{n}=2$ Double-high <br> 3 = Both | [ESC] W <n> | 1BH,57H | $\begin{aligned} & \& \% F S\{n=0\} \\ & \& \% F D\{n=1\} \\ & \& \% F H\{n=3\} \end{aligned}$ | 93 |
| Enable/disable Strike Through. n=0 End $\mathrm{n}=1$ Begin | $[E S C]_{-}<n>$ | 1BH,5FH | $\begin{aligned} & \& \% C O\{n=0\} \\ & \& \% M O\{n=1\} \end{aligned}$ | 93 |
| Begin underline mode. <br> $\mathrm{n}=0$ End <br> $n=1$ Begin | [ESC] - <n> | 1BH,2DH | $\begin{aligned} & \& \% C U\{n=0\} \\ & \& \% M U\{n=1\} \end{aligned}$ | 95 |
| Begin enhanced print. | [ESC] G | 1BH,47H | \&\%ME | 95 |
| End enhanced print. | [ESC] H | 1BH,48H | \&\%CE | 95 |
| Begin emphasized print. | [ESC] E | 1BH,45H | \&\%MM | 95 |
| End emphasized print. | [ESC] F | 1BH,46H | \&\%CM | 95 |
| Set print style. (See command description.) | [ESC] [ @ ... | $\begin{aligned} & \text { 1BH,5BH, } \\ & 40 \mathrm{H} . . . \end{aligned}$ | $\begin{aligned} & \text { \&\%DH } \\ & \text { \&\%SH } \end{aligned}$ | 94 |
| Select superscript. | [ESC] S <0> | $1 \mathrm{BH}, 53 \mathrm{H}, 00 \mathrm{H}$ | \&\%SP | 96 |
| Select subscript. | [ESC] S <1> | 1BH,53H, 01H | \&\%SB | 96 |
| End superscript or subscript. | [ESC] T | 1BH,54H | \&\%SE | 96 |
| Begin italics. | [ESC] \% G | 1BH,25H, 47H | \&\%MI | 97 |
| End italics. | [ESC] \% H | 1BH,25H, 48H | \&\%CI | 97 |


| Description | ASCII | Hex | IPCL equivalent code | Page |
| :---: | :---: | :---: | :---: | :---: |
| Rotated Print |  |  |  |  |
| Begin rotated font. (See command description). | [ESC] P <n> | 18H,50H | $\begin{aligned} & \text { \&\%RI } \\ & \text { \&\%RF } \\ & \text { \&\%RN } \end{aligned}$ | 83 |
| Page Mode |  |  |  |  |
| Select page mode | [ESC] t <n> | 1BH,74H | \&\%PM | 99 |
| Set page mode page size | [ESC] $u<n 1>\ldots$ | 1BH,75H | \&\%PS | 104 |
| Set page mode page position | [ESC] $0<n 1>\ldots$ | 18H,6FH | none | 106 |
| Start Page Mode | [ESC][SUB]t | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 53 \mathrm{H} \end{aligned}$ | \&\%PM | 99 |
| Set Page Mode Size Enhanced | [ESC][SUB]S | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 53 \mathrm{H} \end{aligned}$ | none | 101 |
| Set Page Mode Printed Area | [ESC][SUB]W | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 57 \mathrm{H} \end{aligned}$ | none | 103 |
| Set Page Position Enhanced | [ESC][SUB]A | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 41 \mathrm{H} \end{aligned}$ | \&\%PY | 106 |
| Set Page Position Relative | [ESC][SUB]R | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 52 \mathrm{H} \end{aligned}$ | none | 106 |
| Set Page Overlay mode | [ESC][SUB]O | $\begin{aligned} & \text { 1BH, 1AH } \\ & 4 \mathrm{FH} \end{aligned}$ | none | 106 |
| Set Page Overlay mode | [ESC][SUB]M | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 4 \mathrm{DH} \end{aligned}$ | none | 107 |
| Clear Page Mode Page | [ESC][SUB]C | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{AH} \\ & 43 \mathrm{H} \end{aligned}$ | none | 107 |
| Set Page Mode Auto Size | [ESC][SUB]Z | $\begin{aligned} & \text { 1BH, 1AH } \\ & 5 \mathrm{AH} \end{aligned}$ | none | 105 |
| Select page mode | [ESC] t <n> | 1BH,74H | \&\%PM <m1> |  |
| Set page mode page position | [ESC] $0<n 1>\ldots$ | 18H,6FH |  | 106 |
| Exit page mode | [FF] | OCH | \&\%FF | 107 |
| APA Graphics |  |  |  |  |
| Print single-density graphics. $\begin{aligned} & <n_{1}>=0 \ldots 255 \\ & <n_{2}>=0 \ldots 3 \\ & \text { len }=<n_{1}>+256 *<n_{2}> \end{aligned}$ | [ESC] $\mathrm{K}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ | 1BH,4BH | none | 108 |
| Print half-speed double-density graphics. | [ESC] L $<n_{1}><n_{2}>$ | 1BH,4CH | none | 108 |
| Print full-speed double-density graphics. | [ESC] $\mathrm{Y}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ | 1BH,59H | none | 109 |
| Print quad-density graphics. | [ESC] $\mathrm{Z}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ | 1BH,5AH | none | 109 |
| Select bidirectional or unidirectional print. $\mathrm{n}=0$ Bidirectional <br> $\mathrm{n}=1$ Unidirectional | [ESC] U <n> | 1BH,55H | $\begin{aligned} & \text { \&\%GU }\{n=1\} \\ & \& \% G B\{n=0\} \end{aligned}$ | 110 |
| Print graphics in mode <m> |  | 1BH,2AH | none | 109 |
| Reassign graphic mode. | [ESC] ? <m><n> | 1BH,3FH | none | 110 |
| Two Color Graphics |  |  |  |  |
| Process horizontal graphics data. | [ESC] h <color> <length> <format> <data> | 1BH,68H | none | 112 |
| Set horizontal graphic mode. | [ESC] * <m> <0> <0> | 1BH,2AH | none | 113 |
| User Store |  |  |  |  |
| Begin named macro record. | $\begin{aligned} & \text { [ESC] [US] b } \\ & <\text { Name..> <0> } \end{aligned}$ | 1BH,1FH, 62H | $\begin{aligned} & \text { \&\%UB } \\ & \text { <Name..><0> } \end{aligned}$ | 121 |
| Save macro data in user store. | $\begin{aligned} & \text { [ESC] [US] m } \\ & \text { <Name..> <0> } \end{aligned}$ | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{FH}, \\ & 6 \mathrm{DH} \end{aligned}$ | $\begin{aligned} & \text { \&\%UM } \\ & \text { <Name..><0> } \end{aligned}$ | 122 |
| End named macro record. | $\begin{aligned} & \hline \text { [ESC] [US] e } \\ & <\text { Name.. }><0> \end{aligned}$ | 1BH,1FH, 65H | $\begin{aligned} & \hline \text { \&\%UG } \\ & \text { <Name..><0> } \end{aligned}$ | 122 |
| Load item from user store. | $\begin{aligned} & \text { [ESC] [US] I } \\ & <\text { Name..> <0> } \end{aligned}$ | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{FH}, \\ & 6 \mathrm{CH} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { \&\%UL } \\ & \text { <Name..><0> } \end{aligned}$ | 123 |
| Save user-defined characters. | $\begin{aligned} & \text { [ESC] [US] c } \\ & <\text { Name..> <0> } \end{aligned}$ | 1BH,1FH, 63H | $\begin{aligned} & \hline \text { \&\%UC } \\ & \text { <Name..><0> } \end{aligned}$ | 122 |


| Description | ASCII | Hex | IPCL equivalent code | Page |
| :---: | :---: | :---: | :---: | :---: |
| Run macro data from user store. | [ESC] [US] r <br> <Name..> <0> | 1BH,1FH, 72H | \&\%UR <br> <Name..><0> | 123 |
| Flag item as a start-up macro. | $\begin{aligned} & \text { [ESC] [US] s } \\ & <\text { Name.. }><0> \end{aligned}$ | $\begin{aligned} & \text { 1BH,1FH, } \\ & 6 \mathrm{DH} \end{aligned}$ | $\begin{aligned} & \hline \text { \&\%US } \\ & <\text { Name..><0> } \end{aligned}$ | 123 |
| Delete item from user store. | $\begin{aligned} & \text { [ESC] [US] d } \\ & <\text { Name.. }><0> \end{aligned}$ | 1BH,1FH, 64H | $\begin{aligned} & \text { \&\%UD } \\ & <\text { Name..><0> } \end{aligned}$ | 124 |
| Flush information from user store. | [ESC] [US] f ALL <0> | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{FH}, \\ & 66 \mathrm{H}, 00 \mathrm{H} \end{aligned}$ | \&\%UF | 124 |
| Transfer user store to extended user store | [ESC] [US] t ALL <0> | $\begin{aligned} & 1 \mathrm{BH}, 1 \mathrm{FH}, \\ & 66 \mathrm{H}, 00 \mathrm{H} \end{aligned}$ | \&\%UF | 124 |
| Report on user store. | $\begin{aligned} & \hline \text { [ESC] [US] q } \\ & <\text { Name.. }><0> \\ & \hline \end{aligned}$ | 1BH,1FH, 72H | $\begin{aligned} & \text { \&\%UQ } \\ & \text { <Name..><0> } \end{aligned}$ | 125 |
| Return a report on user store | $\begin{aligned} & \text { [ESC] [US]? } \\ & \text { <Name..> <0> } \end{aligned}$ | 1BH,1FH, 72H | $\begin{aligned} & \text { \&\%UQ } \\ & <\text { Name..><0> } \end{aligned}$ | 125 |
| Process user macro. | [ESC] g <0> | 1BH,67H, 00H | \&\%GP | 127 |
| Start macro record. | [ESC] g <1> | 1BH,67H, 01H | \&\%GS | 127 |
| Stop macro record. | [ESC] g <2> | 1BH,67H, 02H | \&\%GE | 127 |
| Stop macro record and save. | [ESC] g <3> | $\begin{aligned} & 1 \mathrm{BH}, 67 \mathrm{H}, \\ & 03 \mathrm{H} \end{aligned}$ | \&\%GW | 127 |
| Bar Codes |  |  |  |  |
| Print bar code. | [ESC] b <n> ... [NUL] | 1BH,62H | See page 128 | 128 |
| PDF 417 bar code control | [ESC] [EM] E <f> <v> | 1BH 19H 45H | none | 184 |
| Set bar code height. $\mathrm{n}=0$ Restore defaults $\mathrm{n}=1$ - 9 Number of passes (0.11 inch per pass) | [ESC] [EM] B <n> | 1BH, 19H, 42H | $\begin{aligned} & \text { \&\%BH } \\ & <\mathrm{m}_{1}><\mathrm{m}_{2}> \end{aligned}$ | 195 |
| Set bar code width | [ESC] [EM] W <n> | 1BH 19H 57H | \&\%BW <m> | 195 |
| Set bar code justification, HRI print mode, and print direction. | [ESC] [EM] J <n> | $\begin{aligned} & \text { 1BH,19H, } \\ & 4 \mathrm{AH} \end{aligned}$ | $\begin{aligned} & \text { \&\%BJ<m} m_{1}><m \\ & 2> \end{aligned}$ | 195 |
| Unicode |  |  |  |  |
| Initiate Unicode UTF-32BE encoding ${ }^{16}$ | [ESC] + h | 1BH 2BH 68H | none | 263 |
| Initiate Unicode UTF-32LE encoding | [ESC] + 1 | 18H 2BH 6CH | none | 264 |
| Initiate Unicode UTF-16BE encoding | [ESC] + H | 1 BH 2 BH 48 H | none | 263 |
| Initiate Unicode UTF-16LE encoding | [ESC] + L | 1BH 2BH 4CH | none | 264 |
| Initiate Unicode UTF-8 encoding (MBCS) | [ESC] + M | 18H 2BH 4DH | none | 264 |
| Initiate Unicode UTF-8 Text only encoding (MBCS) | [ESC] + T | 1BH 2BH 54H | none | 265 |
| Initiate normal 8-bit ASCII character encoding | [ESC] + A | 1BH 2BH 41H | none | 265 |
| File System Commands |  |  |  |  |
| Open File | [ESC][RS] O<Mod> FileName<0> | 1BH 1EH 4FH | none | 269 |
| Return Free Space for Open File | [ESC][RS] S | 1BH 1EH 53H | none | 270 |
| Return Free Space for Partition | [ESC][RS] s | 1BH 1EH 73H | none | 270 |
| Return Last File Command Status | [ESC][RS] ? | 1BH 1EH 3FH | none | 272 |
| Close File | [ESC][RS] C | 1 BH 1 EH 43 H | none | 270 |
| Close All Files | [ESC][RS] K | 1 BH 1 EH 4 BH | none | 270 |
| Open File | $\begin{aligned} & \hline \text { [ESC][RS]O } \\ & \text { FileName<0> } \end{aligned}$ | 1BH 1EH 4FH | none | 269 |
| Set/Clear File Attributes | $\begin{aligned} & \text { [ESC][RS] A <Atb> } \\ & \text { FileName<0> } \\ & \hline \end{aligned}$ | 1BH 1EH 41H | none | 271 |
| Write File Data | $\begin{aligned} & \text { [ESC][RS] W <L>> } \\ & <L_{H}><\text { data> } \end{aligned}$ | 1BH 1EH 57H | none | 273 |

[^9]| Description | ASCII | Hex | IPCL equivalent code | Page |
| :---: | :---: | :---: | :---: | :---: |
| Read File Data | $\begin{aligned} & \text { [ESC][RS] } R<L_{L}> \\ & <L_{H}> \end{aligned}$ | 1BH 1EH 52H | none | 273 |
| File Directory File | [ESC][RS] I | 1BH 1EH 49H | none | 273 |
| Delete all Files in partition | [ESC][RS] E <p> | 1BH 1EH 45H | none | 273 |
| De-fragment File system | [ESC][RS] F | 1BH 1EH 46H | none | 274 |
| Miscellaneous Commands |  |  |  |  |
| Disable paper out sensor. | [ESC] 8 | 18H,38H | \&\%PF | 199 |
| Enable paper out sensor. | [ESC] 9 | 1BH,39H | \&\%PO | 199 |
| Set left/right margins. <br> n1 = Left margin <br> n2 = Right margin | [ESC] $\mathrm{X}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ | 1BH,58H | none | 199 |
| Clear print buffer. | [CAN] | 18 H | \&\%RP | 200 |
| Query marker. | [ESC] q <n> | 1BH,71H | none | 200 |
| Open cash drawer. n=1 Cash Drawer 1 n=2 Cash Drawer 2 | [ESC] x <n> | 1BH,78H | $\begin{aligned} & \text { \&\%D1 }\{n=1\} \\ & \& \% D 2\{n=2\} \end{aligned}$ | 201 |
| Perform Auto Cut | [ESC] v | 1BH,76H | \&\%FC | 201 |
| Audio alert. | [BEL] | 07H | \&\%BL | 202 |
| Configure audio alert. | $\begin{aligned} & {[\mathrm{ESC}][\mathrm{BEL}]<\mathrm{n}_{1}>} \\ & <\mathrm{n}_{2}><\mathrm{n}_{3}> \end{aligned}$ | 1BH, 07 H | none | 202 |
| Print suppress and data pass through. | [ESC] \lln> | 1BH,3CH | \&\%PT <n> | 204 |
| Initialize printer. | [ESC] @ | 1BH,40H | none | 201 |
| Enable paper error mode operation. | [ESC] p <n> | $1 \mathrm{BH}, 70 \mathrm{H}$ | $\begin{aligned} & \& \% \mathrm{PE}<\mathrm{m}_{1}> \\ & <\mathrm{m}_{2}> \end{aligned}$ | 202 |
| Begin multi-drop control. | [SOH] <n> | 01H | none | 205 |
| Inquire status. (Refer to command descriptions.) | [ENQ] <n> | 05H | none | 210 |
| Inquire cash drawer 1 status | [ENQ] < 1> | 05H01H | none | 210 |
| Control Periodic Status | [ESC][EM]P | $\begin{aligned} & 1 \mathrm{BH}, 19 \mathrm{H}, \\ & 50 \mathrm{H} \end{aligned}$ | none | 225 |
| Control Periodic Status | [ESC][EM]p | $\begin{aligned} & 1 \mathrm{BH}, 19 \mathrm{H}, \\ & 70 \mathrm{H} \\ & \hline \end{aligned}$ | none | 225 |
| Extended Diagnostics |  |  |  |  |
| Set control feature commands. | [ESC] y <n> | 1BH,79H | \&\%Y0 - 9 or \&\%YX<m1> <m2><m3> (for numbers >9) | 205 |

## Low Level Paper Motion Control

## Print/Paper Motion

[CR] Carriage return
ASCII [CR]
Hexadecimal ODH

| Decimal | $<13>$ |
| :--- | :--- |
| IPCL | $\& \% C R$ |
| EPOS | $0 D H$ |

Description The [CR] command prints the contents of the print buffer (if any) and resets the next character print position to the left margin. A line feed is not performed unless auto-feed is active. The print rotation direction and the left margin command define the left margin.

## [LF] Line feed

ASCII [LF]
Hexadecimal OAH
Decimal <10>
IPCL \&\%LF
EPOS OAH
Description The [LF] command prints the contents of the buffer (if any) and advances paper one line at the current default line spacing. The next character print position is not reset to the left margin unless auto-CR is active.

## Horizontal Motion Control

Several commands can be used to control the horizontal position of characters. Many applications use space control to position fields. However, the Model 9000 Printer has the ability to control character position with horizontal tab stops. This is done using the horizontal tab $[\mathrm{HT}]$ to move to those tab stops.
[HT] Horizontal tab
ASCII
[HT]
Hexadecimal 09H
Decimal <9>
IPCL \&\%HT
EPOS [HT]
Description The [HT] command inserts spaces in the print buffer up to the next tab stop. The default tab locations are every eight spaces.

| [BS] | Back space |
| :---: | :---: |
| ASCII | [BS] |
| Hexadecimal | 08H |
| Decimal | <8> |
| IPCL | \&\%BS |
| EPOS | [BS] |
| Description | The [BS] command moves the print buffer one character width to the left. The pointer position cannot be moved to the left of the left margin. [BS] does not cause the buffer to be printed; rather, the following data is OR'ed with the previous data. |
| [ESC] D | Set horizontal tab stops |
| ASCII | [ESC] D $\left.<n_{1}\right\rangle\left\langle n_{2}\right\rangle\left\langle n_{3}\right\rangle \ldots<n_{i}>0$ |
| Hexadecimal | $\left.1 \mathrm{BH} 44 \mathrm{H}<\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle\left\langle\mathrm{n}_{3}>\ldots<\mathrm{n}_{1}>00 \mathrm{H}\right.$ |
| Decimal | <27> <68> <n $\left.{ }_{1}><n_{2}\right\rangle<n_{3}>\ldots<n_{i}><0>$ |
| IPCL | none |
| EPOS | [ESC] D $<n_{1}><n_{2}><n_{3}>\ldots<n_{i}>0$ |
| Description | The [ESC] D $\left.\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle\left\langle n_{3}\right\rangle \ldots<n_{1}\right\rangle 0$ command sets tab stops at the character columns specified by <n>. The end of the settings is specified by a <0>. All previously set tabs will be cleared. The restore-default procedure other than to re-specify the tabs. Column sizes are in accordance with the current character pitch. Setting tabs that are beyond the station width is possible. A [CR] is inserted when the tab is used. Printing begins at the home position. The power up default is every eight spaces, i.e., $9,17,25$, and so on. |

[ESC] R Reset horizontal and vertical tab stops
ASCII [ESC] R
Hexadecimal 1 BH 52 H
Decimal <27> <82>
IPCL \&\%HV
EPOS none
Description The [ESC] R command resets horizontal and vertical tab stops to the power up configuration. The power up horizontal default is every eight spaces, i.e., $9,17,25$, and so on. The vertical default is every line.

## [ESC] [HT] Set a horizontal tab stop

ASCII $\quad[E S C][H T]<T_{L}><T_{H}>$
Hexadecimal 1BH $09 \mathrm{H}<T_{L}><T_{H}>$
Decimal $<27><09><T_{L}><T_{H}>$
IPCL none
EPOS none
Description With TrueType fonts, a fixed character width is not always possible because the characters are not always a consistent size. To allow better control over column alignment, this command will set tab stops based on dot columns. Up to 32 tab stops may be defined. If $\left\langle T_{L}\right\rangle\left\langle T_{H}\right\rangle$ are zero, all tab stops will be removed.

## [ESC] a Set Justification

ASCII [ESC] a <n>
Hexadecimal 1BH 61H <n>
Decimal <27> <97> <n>
IPCL \&\%JL, \&\%JC, \&\%JR
EPOS [ESC] a <n>
Description The [ESC] a <n> command sets the horizontal justification.
Where <n> $0=$ Left justified \&\%JL
1 = Center justified \&\%JC
2 = Right justified \&\%JR
8 = Left justified (no line feed) None
9 = Center justified (no line feed) None
10 = Right justified (no line feed) None
The print format of the printer can be right, center, or left justified. The value of <n> specifies the justification. The power on default is left justified.

Note: The justify commands do not affect graphics.
Note: For the no line feed option to function, the line buffer must be empty.
[ESC] n Set horizontal position
ASCII [ESC] $n<n_{1}><n_{2}>$
Hexadecimal 1BH 6EH $\left.<n_{1}\right\rangle\left\langle n_{2}\right\rangle$
Decimal $<27><110><n_{1}><n_{2}>$
IPCL $\quad \& \% H P<m_{1}><m_{2}><m_{3}>$
EPOS $\quad[E S C] \$<n_{1}><n_{2}>$
Description The [ESC] $\langle n\rangle\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle$ command sets the print position to $\left\langle n_{1}\right\rangle+\left\langle n_{2}\right\rangle$

* 256 in 1/196 inches.


## Vertical Motion Control

[ESC] $\mathrm{j} \quad$ Perform a fine line feed

ASCII [ESC] J <n>
Hexadecimal 1BH 4AH <n>
Decimal <27> <74> <n>
IPCL $\quad \& \% F M<m_{1}><m_{2}><m_{3}>$
EPOS $\quad[E S C] J<n>$
Description The [ESC] J <n> command prints the contents of the buffer and performs a line feed of $n / 216$ inch. The default line spacing value is not changed. The next character print position is reset to the left margin if the Auto-CR mode is set.


## Notes:

- In EPOS mode, the command performs feeds in $n / 144$-inch increments.
- Immediately after APA graphics, the command is adjusted for the difference between 72 dpi graphics and 96 dpi print.
[ESC] 3 Set variable line spacing to $\mathbf{n} / 216$ inch
ASCII [ESC] $3<n>$
Hexadecimal 1BH 33H <n>
Decimal <27> <51> <n>
IPCL \&\%SV <m1> <m2> <m3>
EPOS $\quad[E S C] 3<n>$
Description The [ESC] $3<n>$ command sets the default line spacing to $n / 216$ inch.
Set $\mathrm{n}=1$ to 255 . The line feed spacing used by [LF] is set to values other than $1 / 8$ or $7 / 72$ inch. The command takes effect immediately.

Note: In EPOS mode, the command performs line feeds in n/144-inch increments.
[ESC] $0 \quad$ Set line spacing to $1 / 8$ inch
ASCII [ESC] 0
Hexadecimal 1BH 30H
Decimal <27> <48>
IPCL \&\%ST
EPOS [ESC] 2
Description The [ESC] 0 command sets the default line spacing to $1 / 8$ inch (27/216 inch), which is the standard eight lines per inch line spacing at initial power-up.
Note: In EPOS mode, the command sets $1 / 6$-inch spacing or six lines per inch.
[ESC] 1 Set line spacing to 21/216 inch or 7/72 inch

| ASCII | [ESC] 1 |
| :---: | :---: |
| Hexadecimal | 1 BH 31 H |
| Decimal | <27> <49> |
| IPCL | \&\%SG |
| EPOS | none |
| Description | The [ESC] 1 command sets the default line spacing to 21/216 inch. Use 21/216-inch line spacing for all-points-addressable (APA) graphics printing. |
| [ESC] A | Set variable line spacing to $\mathrm{n} / 72$ inch |
| ASCII | [ESC] A <n> |
| Hexadecimal | 1BH 41H <n> |
| Decimal | <27> <65> <n> |
| IPCL | none |
| EPOS | none |
| Description | The [ESC] $A<n>$ command sets the default line spacing to $n / 72$. Set $n=$ 1 to 85 . Variable line spacing does not take effect until enabled by the [ESC] 2 command. The command is provided to maintain backward compatibility with the Ithaca ${ }^{\circledR}$ Series 50 , OKIDATA, IBM, and other printers. It can also be used to print on preprinted forms. |
| [ESC] 2 | Enable [ESC] A <n> variable line spacing |
| ASCII | [ESC] 2 |
| Hexadecimal | 1 BH 32 H |
| Decimal | <27> <50> |
| IPCL | none |
| EPOS | none |
| Description | The [ESC] 2 command is a companion to the [ESC] A <n> command and puts the specified line spacing into effect. It remains in effect until another line spacing command is issued. |

[ESC] d Feed <n> lines at the current spacing
ASCII [ESC]d <n>
Hexadecimal 1BH 64H <n>
Decimal <27> <100> <n>
IPCL \&\%FL <m1> <m2>
EPOS [ESC]d
Description The [ESC] d <n> command prints the contents of the buffer (if any) and performs <n> line feeds at the current line spacing. The command does not change the default line spacing value. The next character print position is reset to the left margin.

Note: The IPCL command prints from 00 to 99 lines. For example, if you wish to feed 12 lines, the IPCL command would be as follows: \&\%FL12.

Function Reverse feed < $\mathrm{n}>$ lines at the current spacing
ASCII [ESC] e <n>
Hexadecimal 1BH 65H <n>
Decimal <27> <101> <n>
IPCL \&\%FB <m1> <m2>
EPOS [ESC]e
Description The [ESC] e <n> command prints the contents of the buffer (if any) and performs $<n>$ reverse line feeds at the current line spacing. The command does not change the default line spacing value. The next character print position is reset to the left margin.


Note: The IPCL command prints from 00 to 99 lines. For example, if you wish to feed 12 lines, the IPCL command would be as follows: \&\%FL12.
[VT] Vertical tab

ASCII
Hexadecimal OBH
Decimal <11>
IPCL \&\%VT
EPOS (VT)
Description The printer sets a line counter to the top of the form at reset and when a set top of form command is issued. By setting vertical tab stops, various form positions can be reached with a [VT] operation.

| [ESC] B | Set vertical tab stops |
| :---: | :---: |
| ASCII | [ESC] $B<n_{1}><n_{2}><n_{3}>\ldots<n_{>}>0$ |
| Hexadecimal | $\left.1 \mathrm{BH} 42 \mathrm{H}<\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle\left\langle\mathrm{n}_{3}\right\rangle \ldots<\mathrm{n}_{1}>00 \mathrm{H}$ |
| Decimal | <27> <66> <n ${ }_{1}><n_{2}><n_{3}>\ldots<n_{i}><0>$ |
| IPCL | none |
| EPOS | [ESC] $B<n_{1}><n_{2}><n_{3}>\ldots<n_{i}>0$ |
| Description | The [ESC] $\left.\left.B<n_{1}\right\rangle\left\langle n_{2}\right\rangle\left\langle n_{3}\right\rangle \ldots<n_{i}\right\rangle 0$ command sets tab stops at line positions specified by $<\mathrm{n}>$. The end of the setting is specified by a $<0>$. All previously set tabs will be cleared. If $n_{n}$ is less than $n_{n-1}$, then the command is in error, and all of the following information is printed. In other words, tab stops must be entered sequentially in order to be accepted. A total of 64 tab stops can be specified. (The power on default is a vertical tab on every line). |

[ESC] R Reset horizontal and vertical tab stops
ASCII [ESC]R
Hexadecimal 1BH 52H
Decimal <27> <82>
IPCL \&\%HV
EPOS none
Description The [ESC] R command resets horizontal and vertical tab stops to power up configuration. The power up horizontal default is every eight spaces, i.e., $9,17,25$, etc. The vertical default is every line.

## [FF] Form feed

ASCII
[FF]
Hexadecimal 0 CH
Decimal <12>
IPCL \&\%FF
EPOS none
Description The [FF] command performs a form feed to the top of the form.
Note: The form feed command can be disabled. Set the form length to zero.
[ESC] 4 Set top of form

ASCII [ESC] 4
Hexadecimal 1BH 34H
Decimal <27> <52>
IPCL \&\%TF
EPOS [ESC]L
Description The [ESC] 4 command sets the top of form to the current position.

## [ESC] C Set form length in lines

## ASCII [ESC] C <n>

Hexadecimal 1BH 43H <n>
Decimal <27> <67> <n>
IPCL $\quad \& \% S L<m_{1}><m_{2}>$
EPOS $[E S C] C$ $<$ >
Description The [ESC] C <n> command sets the form length to <n> lines at the current line spacing. If the current page position is greater than the new page length, the command also sets the current position as the top of form.

## [ESC] C [NUL] Set form length in inches

ASCII [ESC] C [NUL] <n>
Hexadecimal 1BH 43H <0> <n>
Decimal <27> <67> <0> <n>
IPCL $\quad \& \% \mathrm{SI}<\mathrm{m}_{1}><\mathrm{m}_{2}>$
EPOS none
Description The [ESC] C [NUL] <n> command sets the form length to <n> inches. If the current page position is greater than the new page length, the command also sets the current position as the top of form. If zero inches are specified, the form feed and vertical tab commands are ignored.
[ESC] $5 \quad$ Begin auto line feed
ASCII [ESC] 5 <n>
Hexadecimal $1 \mathrm{BH} 35 \mathrm{H}<\mathrm{n}>$
Decimal <27> <53> <n>
IPCL \&\%MA (Begin)
IPCL \&\%CA (End)
EPOS none

Description The [ESC] $5<1>$ command sets auto line feed mode. [ESC] $5<0>$ command ends auto line feed mode.

Note: The begin or end auto line feed command overrides the configuration setting.

| [ESC] ] | Reverse line feed |
| :--- | :--- |
| ASCII | $[E S C]]$ |
| Hexadecimal | 1 BH 5 DH |
| Decimal | $<27><93>$ |
| IPCL | $\& \% \mathrm{LR}$ |
| EPOS | none |
| Description | The [ESC] ] command performs a reverse line feed at the current line <br> spacing. |
|  | Note: The Model 9000 Printer can tolerate no more than $1 / 2$ inch of <br> reverse feed. |

## Feed to Black Dot

An option for the Model 9000 is a black dot sensor. This sensor allows preprinted paper with black index marks to be positioned by a feed to black dot command.


Note: This is a special order option, and requires an additional sensor and modified firmware. It is not possible to field retrofit a standard Model 9000 with a black dot sensor.

## Function Feed to Black Dot

ASCII [ESC][VT]<n>

Hexadecimal !BH,0BH,<n>
Decimal <27><11><n>
IPCL None

EPOS [GS][VT]<n>
Where $\mathbf{n} \quad<\mathrm{n}>$ is the number of inches to feed while looking for the black marker.
Description The [ESC][VT] command performs feeds the paper until the black dot is positioned as configured.
The Model 9000 keeps track of the location of the black dot and will feed paper until the black dot is positioned as configured.
There are three configurable Black Dot parameters. The Dot Width, and the Offset may be adjusted to operate with a specific paper. The Calibration is preset and should not be changed.
Function Adjusting the width and offset of the Black Dot

ASCII ESC ~ W nl nh m
Hexadecimal 1B 7E 57 nlnh m
Decimal $2712687 \mathrm{nl} \mathrm{nh} m$
Where $\quad n=$ The offset adjustment of the Black dot in $n / 203$ inches where $n=$ $\mathrm{nl}+256 * \mathrm{nh}$. Default is 304 or 1.5 inches. Values greater than 368 will set n to 368 .
$\mathrm{m}=$ The Width of the black dot in $\mathrm{m} / 203$ inches. The default is 76 or 0.375 inches. Values less than 51 will be ignored.

The offset adjustment is the position of the black dot in relation to the cut point. If $\mathrm{n}=0$ the cut point will be in the center of the black dot. If the value of $n=304$, the cut point will be 1.5 inches above the black dot.

Note: This command may be issued as part of an application. If the values in the configuration match the requested values, no operation occurs.


Note: This command interacts with the Feed to Black Dot command. If the Black Dot paper Option is set, the black dot position specified by this command will be used for the Cover Close operation.

## Black Dot Calibration

There is a self test option that will automatically configure the black dot feature to cut on the black dot.

Note: If you don't want to cut on the black dot, you should disable the black dot position calibration feature in the configuration.

## Character Pitch

Character pitch commands that set specific characters per inch (cpi) disable any rightside spacing set by the [ESC] V <n> command. In addition, when font changes are made, the character pitch is maintained.

## [DC2] Begin 10 cpi character pitch

ASCII [DC2]
Hexadecimal 12H
Decimal <18>
IPCL \&\%F3
EPOS [ESC][SP] <n>
Description The [DC2] command sets 9.905 characters per inch print pitch.
[ESC] : Begin 12 cpi character pitch
ASCII [ESC]:
Hexadecimal 1BH 3AH
Decimal <27> <58>
IPCL \&\%F2
EPOS $[E S C][S P]$ <n>
Description The [ESC] : command sets 12.235 characters per inch print pitch.
[SI] Begin 17 cpi character pitch
ASCII [SI]
Hexadecimal OFH
Decimal <15>
IPCL \&\%F1
EPOS $\quad[E S C][S P]$ <n>
Description The [SI] command sets 17.333 characters per inch print pitch.
[ESC] [SI] Begin 24 cpi character pitch
ASCII [ESC] [SI]
Hexadecimal 1BH 0FH
Decimal <27> <15>
IPCL \&\%F4
EPOS [ESC][SP] <n>
Description The [ESC] [SP] command sets 23.111 characters per inch print pitch.

## [ESC] [ P Set character pitch

ASCII [ESC][P <n>
Hexadecimal 1BH 5BH 50H <n>
Decimal <27> <91> <80> <n>
IPCL \&\%F1, \&\%F2, \&\%F3, \&\%F4, \&\%F5, \&\%F6, \&\%F7
EPOS $[E S C][S P]<n>$
Description The [ESC] [ $P<n>$ command sets character per inch print pitch to $<n>$. The printer resolution limits the exact print pitch. The following table lists the exact pitch for various values on $<n>$.

| <n> | Resulting Characters per Inch | IPCL | <n> | Resulting Characters per Inch | IPCL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.00 |  | 16 | 16.00 |  |
| 2 | 2.00 |  | 17 | 17.33 | \&\%F1 |
| 3 | 3.01 |  | 18 | 17.33 |  |
| 4 | 4.00 |  | 19 | 18.91 |  |
| 5 | 4.95 |  | 20 | 20.8 | \&\%F5 |
| 6 | 5.94 |  | 21 | 20.8 |  |
| 7 | 6.93 |  | 22 | 23.11 |  |
| 8 | 8.00 | \&\%F7 | 23 | 23.11 |  |
| 9 | 9.04 |  | 24 | 23.11 | \&\%F4 |
| 10 | 9.90 | \&\%F3 | 25 | 23.11 |  |
| 11 | 10.95 |  | 26 | 26 |  |
| 12 | 12.23 | \&\%F2 | 27 | 26 |  |
| 13 | 13.00 |  | 28 | 26 |  |
| 14 | 13.87 |  | 29 | 29.71 |  |
| 15 | 14.86 | \&\%F6 | 30 | 29.71 |  |

Table 15 Character Pitch

This command disables any right-side spacing set by the [ESC] V command. In addition when font changes are made, the character pitch is maintained.
[ESC] V Set inter-character spacing

| Mode | Global |
| :--- | :--- |
| ASCII | [ESC] $\mathrm{V}<\mathrm{n}>$ |
| Hexadecimal | $1 \mathrm{BH} 56 \mathrm{H}<\mathrm{n}>$ |
| Decimal | $<27><86><n>$ |
| IPCL | none |
| EPOS | $[E S C][S P]<n>$ |

Description The [ESC] V <n> command sets inter-character spacing by adding white space between characters. The value of <n> sets the spacing in 216ths of an inch. The printer can only set the spacing in 208ths of an inch and converts 216 ths to the nearest 208th of an inch. Each font has a basic size, and the inter-character spacing value is added to the basic size. Therefore, the affect of this command on characters per inch (cpi) will depend on the font selected.

Note 1: The [ESC] V <n> command disables any pitch settings established by pitch set commands that establish a cpi (like [ESC] [ P $<n>$ ). After a set right-side spacing command is issued, the pitch will vary with font selection. Font selections use the current, active, right-side spacing.


Note 2: With the inter-character spacing command, the pitch cannot be set less than the font size. Therefore, it is not as effective as the pitch command, [ESC] [ $\mathrm{P}<\mathrm{n}>$. The following table lists the cpi equivalent for several values of <n>.

The following table lists the cpi equivalent for several values of <n>.

| $\langle\mathbf{n}>$ | Small Draft (cpi) | Large Draft (cpi) | NLQ (cpi) |
| :---: | :---: | :---: | :---: |
| 0 | 17.33 | 14.86 | 13 |
| 1 | 16 | 13.9 | 12.24 |
| 2 | 14.86 | 13 | 11.6 |
| 3 | 13.9 | 12.24 | 10.9 |
| 4 | 13 | 11.6 | 10.4 |
| 5 | 12.24 | 10.9 | 9.90 |

Table 16 Inter-character Spacing

## Character Font

[ESC] \# Begin $12 \times 12$ draft print mode

| ASCII | $[\mathrm{ESC}] \#<0>$ |
| :--- | :--- |
| Hexadecimal | 1 BH 23 H 00 H |
| Decimal | $<27><35><0>$ |
| IPCL | $\& \% Q T$ |
| EPOS | $[E S C]!<n>$ |

Description The [ESC] \# < 0> command begins $12 \times 12$ draft print mode. Draft print is provided to maintain compatibility with other Ithaca ${ }^{\circledR}$ products.
[ESC] I Set print quality mode
ASCII [ESC]I <n>
Hexadecimal 1BH 49H <n>
Decimal <27> <73> <n>
IPCL \&\%QT $24 \times 10$ Small
\&\%QU $24 \times 14$ Medium
\&\%QL $24 \times 18$ Large
\&\%QS $24 \times 20$ Larger
EPOS [ESC] $x$ <n> and/or [ESC]! <n>
Description The [ESC] I <n> (e.g. capital "i") command begins draft, large draft or near letter quality print mode.
Where $n \quad 0=24 \times 10$ Small
$1=24 \times 14$ Medium
$2=24 \times 18$ Large
3 = $24 \times 20$ Larger
4-7 repeats 0-3

Note 1: In EPOS mode, [ESC] $x$ <n> is similar to [ESC] I <n>. [ESC]! <n> performs a similar function.
[ESC] P Begin rotated font
ASCII [ESC] P <n>
Hexadecimal 1BH 50H <n>
Decimal <27> <80> <n>
IPCL
\&\%RI $\{n=2\}$
\&\%RF $\{n=1\}$
\&\%RN $\{n=0\}$
EPOS
[ESC] V <n>
Description The [ESC] P <n> command sets the print font to a rotated $90^{\circ}$ or $270^{\circ}$ font.
Where $n \quad n=0 \quad$ Normal
$\mathrm{n}=1$ Rotate $90^{\circ}$
$\mathrm{n}=2$ Rotate $270^{\circ}$

## Character Sets and Code Pages

The Model 9000 Printer is primarily intended to be used in Unicode based systems. However to provide legacy support, the printer supports 8 bit and double byte ASCII encoding with code pages.

When not using Unicode or double byte encoding, the printer is restricted to the 8 bit ASCII character set. To support international languages, the characters that are assigned to each of the 256 possible locations can be remapped to any character in the Unicode standard. Typically, the first 32 characters are reserved for control characters. The next 72 are typically fixed to alpha numeric and punctuation. The upper 128 characters are typically redefined to characters that support the specific language or country. These mappings are generally referred to as codepages.

The Model 9000 provides several legacy commands to select a country code or codepage maps. However, they all simply select an ASCII to Unicode translation map. Several predefined mappings to provide legacy support are internal to the printer, but the majority of the maps are placed in the printer's file system. This allows any preexisting codepage mapping to be defined as well as the ability to define custom mappings unique to your application.

Note: Note: If UTF encoding is active code pages are not meaningful. Code page commands will have no affect on the character addressing.

## Codepage description files

The format of the codepage description file is somewhat flexible. The basic format is that each line will specify an ASCII character ID and the Unicode character that is to appear in that ASCII ID location.

The file format is one character per line with the first value being the ASCII ID and the second value being the Unicode address. The file should be something like this:

```
0x00 0x0000 # NULL
0x01 0x0001 # START OF HEADING
0x02 0x0002 # START OF TEXT
0x03 0x0003 # END OF TEXT
...
or
\Language = USA
\Code Page = 437
0x00 0x0000 ;0 NULL
0x01 0x263A ; 9786 WHITE SMILE
0x02 0x263B ;9787 BLACK SMILE
0x03 0x2665 ; 9829 BLACK HEART SUIT
0x04 0x2666 ;9830 BLACK DIAMOND SUIT
0x05 0x2663 ; 9827 BLACK CLUB SUIT
```

```
2 9787 ; BLACK SMILE
3 9829 ; BLACK HEART SUIT
4 9830; BLACK DIAMOND SUIT
5 9827 ; BLACK CLUB SUIT
...
Or
SYMBOL SET = WE
/name = Windows 3.1 Latin 2
/pcl char = E
/symbols =
32 0x0020 ; Space Code, Prntabl Thin Space
33 0x0021 ; Exclamation
34 0x0022 ; Neutral Double Quote
5 0x0023; Number
36 0x0024 ; Dollar
or
\Language = USA
\Code Page = 437
0x00 - 0x0000 ;0 NULL
0x01 - 0x263A ; 9786 WHITE SMILE
0x02 - 0x263B ;9787 BLACK SMILE
0x03 - 0x2665 ;9829 BLACK HART SUIT
0x04 - 0x2666 ; 9830 BLACK DIAMOND SUIT
0x05 - 0x2663 ;9827 BLACK CLUB SUIT
or
LLanguage = USA
\Code Page = 437
0x00= 0x0000 ;0 NULL
0x01 = 0x263A ;9786 WHITE SMILE
0x02 = 0x263B ;9787 BLACK SMILE
0x03 = 0x2665 ;9829 BLACK HART SUIT
0x04 = 0x2666 ;9830 BLACK DIAMOND SUIT
0x05 = 0x2663 ;9827 BLACK CLUB SUIT
```

Numbers beginning with $0 x .$. are treated as hexadecimal, all other as decimal. Any line beginning with a non-numeric value is ignored. Any information after the Unicode value is ignored. Not all of the ASCII ID's need to be present, however, only ID's present will be affected.

There are two ways to select a codepage file. The first is by using the standard code page select command. If this command is used, the file name is critical; it must follow the format of Cpxyz.CPM. The xyz is the code page number that is being selected in the command. For example CP850.CPM would be referred to as 850 . If the legacy commands are to be used to select file based code page mapping, the selection mode must be selected in the printer's configuration.

The second form is by name. This command is free form and will select any file present which will then be to use it as a code page definition. If the file is not a code page file,
you will get unexpected results. If the file does not exist, the command is ignored. Any extension may be used for a codepage map, however, it is best to use the .CPM extension, with a descriptive filename recommended. For example ISO8859-1.CPM would be a good choice for the ISO8859-1 code page.

## Double-Byte and Multi-Byte Code Page Description

 FilesIn ASCII mode the Model 9000 Printer supports double byte code pages. Currently there are 4 double-byte codepages available and one multi-byte. Double Byte code pages available are: Code page 932, 936, 949 and 950 Multi-byte code page available are GB18030-2000.

These code pages require an appropriate Unicode font be loaded that support all the characters in the requested code page.

Due to the large number of characters in these code pages. These files are not supported in a customer definable ASCII form like the Code page descriptions files described above. They are compiled and compressed into a 2 or 3 file code description set. One file is like the Code page description file in that it may be referenced just like the normal code page description files. The other two files are double byte and multibyte decode files and are referenced in the master code page description. These files not distributed with the standard printer but are available from TransAct upon request.

## Code page selection

In ASCII mode the Model 9000 Printer supports over 40 different international character sets by default. In IBM and EPOS printers, there are two ways of selecting a character set.

One way substitute's international characters in the upper 128 characters of a standard character set. The substitution technique supports a few different countries. However, as more and more countries were added, too many characters were being replaced, and it became a problem for the application to match the characters displayed and printed.

To solve this problem, a second method of selecting a character set was developed code pages. The printer and display use the same code page, and the application displays and prints the same characters. IBM and EPOS defined new commands to select code pages, and left the old commands in effect.

The Model 9000 Printer supports international character sets as well as code pages. To allow the most flexibility for the application programmer, both methods are extended in the Model 9000 Printer.

The Model 9000 Printer allows the IBM code page selection command to choose character sets as well as normal IBM code pages. The EPOS character set select command has been extended to allow additional character sets over and above the 11 defined by EPOS. The EPOS ${ }^{17}$ code page select command has not been extended because there is no EPOS definition beyond the first six ID's.

[^10]All characters in code pages as well as character sets are addressed as zero through 255. (Characters below 32 must be addressed with the [ESC] ^ <n> command.) Code pages may be changed at any time and are active for all features including rotated print. To allow other code pages to be created by an application, a redefine character set command is provided.

As discussed above, there are two commands for language selection in IBM mode. The first is [ESC] !, which selects one of 19 international character sets. The [ESC] ! command does not allow all of the possible character sets to be selected, it is provided for compatibility with older programs only. The second is [ESC] [ T, which selects any code page. In EPOS mode, the [ESC] R command has been expanded to select any code page.
[ESC] ! Select international character set
ASCII [ESC]! <n>
Hexadecimal 1BH 21H <n>
Decimal <27> <33> <n>
IPCL \&\%CS <n>
EPOS $\quad[E S C] R$ <n>
Description The [ESC] ! <n> command selects international character set <n>. In standard mode, the value of <n> is as follows.

| <n> | Language | <n> | Language |
| :---: | :---: | :---: | :---: |
| 64-‘@' | ASCII (slashed zero) | 73-I' | Italian |
| 65-'A' | ASCII (unslashed zero) | 74-'J' | French Canadian |
| 66-'B' | British | 75-'K' | Spanish |
| 67-'C' | German | 76-'L' | Swedish II |
| 68-'D' | French | 77 -'M' | Swedish III |
| 69-'E' | Swedish | 78-'N' | Swedish IV |
| 70-'F' | Danish | 79-'0' | Turkish |
| 71-'G' | Norwegian | 80-'P' | Swiss I |
| 72-'H' | Dutch | 81-'Q' | Swiss II |

Table 17 Language Table ID's
[ESC] [ T Select character code page
ASCII [ESC] [ $T<n_{n}><n_{\mid}>$
Hexadecimal 1BH 5BH 54H <n $\left.\rangle><n_{\mid}\right\rangle$
Decimal $<27><91><84><n_{n}><n_{>}>$
IPCL $\quad \& \% C P<m_{1}><m_{2}><m_{3}><m_{4}>$
EPOS [ESC] t <n>
Description The [ESC] [ T <n $n_{h}><n_{>}>$command selects character code page $<n_{h}>$ $<n_{\mid}>$. The Model 9000 Printer supports many code pages. The following code pages are supported.
Refer to Appendix A for a list of supported code page.

Note: The code page field is a 16-bit field that is a function of the code page numbers $<n_{h}>$ and $<n_{1}>$, e.g. $\left(<n_{h}>* 256\right)+<n_{1}>$. For example, $1^{*}$ $256+181=437$. For the IPCL command, the page is specified in ASCII as a 4-byte field.
Note: If the code page is not found in the internal translation, the code page requested is translated into a code page file name and if a user defined file is found, it will be used as the code page definition.
Note: If UTF encoding is active code pages are not meaningful. This command will have no affect on the character addressing.

| Function | Select character code page by name. |
| :--- | :--- |
| ASCII | $[E S C]+C$ Codepage. $C P M<0>$ |

Hexadecimal 1BH 2BH 43H
Decimal <27> <43> <67>
CodePage File name from 5 to 30 characters.
Description The [ESC] + C command will select and read a code page encoding file. If the file does not exist, the current code page will be selected. If the code page definition is not complete, only the character locations defined by the file will be effected.

Note: This command functions by redefining the code page translation table. if Unicode UTF encoding is active, all code page selection and modification commands do not functional and have no effect.
[ESC] [ C Insert Euro character
ASCII ESC][ C <n>
Hexadecimal 1BH 5BH 43H <n>
Decimal <27> <91> <67> <n>
IPCL
\&\%EU
Description The [ESC] [ C <n> command allows an application to replace any character in the currently active character set with the Euro character. The character to be replaced is defined by <n>. For example, if the currently active character set is CP 850 (multi-lingual) and 0D5H character is to be the Euro character, "1BH 5BH 43H 0D5H" replaces the character at 0D5H with the Euro symbol.

## Euro Character Substitution Matrix

| Name | Epson | IBM | Code Page Insertion Point (hex) |
| :--- | :--- | :--- | :---: |
| 850 | 26 | 850 | 0xD5 |
| Turkey 857 | 57 | 857 | OXD5 |
| Win Cyrillic | 52 | 1022 | 0X88 |
| Win Turkish | 51 | 1021 | 0X80 |
| Win Greek | 50 | 1020 | $0 \times 80$ |
| Win Hebrew | 62 | 1032 | OX80 |
| Win Baltic | 68 | 1034 | OX80 |

Table 18 Euro Character Substitution Matrix
Note: This command functions by redefining the code page translation table. if Unicode UTF encoding is active, all code page selection and modification commands do not functional and have no effect.

## [ESC] [ S Redefine character set

ASCII $\quad[E S C]\left[S<L_{L}><L_{H}><B_{C}><T_{1 H}><T_{1 L}><T_{2 H}><T_{2 L}><T_{3 H}><T_{3 L}>\right.$ $\ldots<T_{n L}><T_{n H}>$
Hexadecimal 1BH 5BH 53H ...
Decimal <27> <91> <83> ...
IPCL none
Description The [ESC][ $S<L_{L}><L_{H}><B_{C}><T_{1 H}><T_{1 L}><T_{2 H}><T_{2 L}><T_{3 H}><T_{3 L}>\ldots$ $<T_{n H}><T_{n L}>$ command allows an application to replace or redefine the active character set mapping in the printer, where $<L_{H}><L_{L}>$ defines the total length of the following data:
$<L_{L}>+256^{*}<L_{H}>=1+2$ * the total number of characters to be replaced; $<B_{c}>$ is the first character in the active map to be replaced $<T_{1 H}><T_{1 L}>^{18}$ is the internal address of the replacement character image.

The mapping of a print pattern to each character address is referred to a code page or character set. At any given time, the printer character set is comprised of 256 characters. Each character is addressed by an 8 -bit value generally referred to as a character code. For example, if you want to print an ' $A$ ', it would be addressed by sending a <65> decimal to the printer. Sixty-five predefined code pages or character maps assign characters to a particular address built into the printer. Occasionally, an application needs to redefine a character or group of characters in a code page. The Model 9000 Printer allows the map for any code page to be redefined or replaced. The define character set command allows any character or group of characters to be replaced with any other printable character. Unicode addressing is used. The redefine character set command is used as follows:
[ESC] [ $S<3><0><35><90><1>$ $\wedge \wedge \wedge \wedge \wedge ~ \wedge \wedge ~ \wedge \wedge \wedge \wedge \wedge \wedge ~$


The new map remains until the printer is power cycled or the character set is redefined. The code page and character set commands completely redefine the table.

Note: This command functions by redefining the code page translation table. if Unicode UTF encoding is active, all code page selection and modification commands do not functional and have no effect.

## Print Control Characters

[ESC] ^ Print control character

ASCII $\quad[E S C]^{\wedge}<n>$
Hexadecimal 1BH 5EH <n>
Decimal <27> <94> <n>
IPCL \&\%CC <m1> <m2> <m3>
EPOS $\quad[E S C] \wedge<n>$
Description The [ESC] ^ <n> command allows characters from zero to 31 codes to be printed. During normal operation, characters from zero to 31 are control characters. The command turns off control code translation for the following character. <n> can be from zero to 255 .
[ESC] " Print Unicode character

| ASCII | [ESC] " <n ${ }_{L}><\mathrm{n}_{\mathrm{H}}>$ |
| :---: | :---: |
| Hexadecimal | $1 \mathrm{BH} 22 \mathrm{H}<\mathrm{n}_{L}><\mathrm{n}_{\mathrm{H}}>$ |
| Decimal | <27> <34> <n ${ }_{\text {L }}><\mathrm{n}_{\mathrm{H}}>$ |
| IPCL | \&\%PU<m1> <m2> <m3><m4> <m5> |
| EPOS | [ESC] " <n $\mathrm{n}_{\perp}><\mathrm{n}_{\mathrm{H}}>$ |

Description The [ESC] " $<n_{L}><n_{H}>$ Command allows any Unicode character to be directly addressed and inserted into the print data. <n $\mathrm{n}_{\mathrm{L}}><\mathrm{n}_{\mathrm{H}}>$ can range in value from zero to 65535. (Does not support Extended 24 bit addressing)

## User Defined characters

[ESC] = Define user-defined characters
ASCII $\quad[E S C]=\langle y\rangle\left\langle c_{1}\right\rangle\left\langle\mathrm{C}_{2}\right\rangle\left[\left\langle\mathrm{x}_{1}\right\rangle\left\langle\mathrm{d}_{1}\right\rangle \ldots \mathrm{d}\left(\mathrm{y} x \mathrm{x}_{1}\right)\right] \ldots\left[\left\langle\mathrm{x}_{\mathrm{k}}\right\rangle\left\langle\mathrm{d}_{1}\right\rangle \ldots \mathrm{d}\left(\mathrm{y} x \mathrm{x}_{\mathrm{k}}\right)\right]$
Hexadecimal 1BH 3DH <y> ...
Decimal <27> <51> <y> ...
Range $\quad y=2$ or 3
$32 \leq \mathrm{c}_{1} \leq \mathrm{c}_{2} \leq 255$
$0 \leq x \leq 24$ font character width
$0 \leq \mathrm{d}_{1} \ldots \mathrm{~d}(\mathrm{y} x \mathrm{x}) \leq 255$
IPCL none
Description: The [ESC] $=\langle\mathrm{y}\rangle\left\langle\mathrm{c}_{1}\right\rangle\left\langle\mathrm{c}_{2}\right\rangle\left[\left\langle\mathrm{x}_{1}\right\rangle\left\langle\mathrm{d}_{1}\right\rangle \ldots \mathrm{d}\left(\mathrm{y} x \mathrm{x}_{1}\right)\right] \ldots\left[\left\langle\mathrm{x}_{\mathrm{k}}\right\rangle\left\langle\mathrm{d}_{1}\right\rangle \ldots \mathrm{d}(\mathrm{y} x\right.$ $\left.x_{k}\right)$ ] command defines user-defined characters from character code $\left\langle\mathrm{c}_{1}\right\rangle$ to $\left\langle\mathrm{C}_{2}\right\rangle$. <y> and $<\mathrm{x}>$ are the configurations of a user-defined character. $<y>$ specifies the number of bytes in the vertical direction. <x> specifies the number of bytes in the horizontal direction. Character code ranges from $32(20 \mathrm{H})$ to 255 ( FFH ) can be defined by $\left\langle\mathrm{c}_{1}>\right.$ and $\left\langle\mathrm{c}_{2}\right\rangle$. Up to 223 user-defined characters can be defined. Data (<d>) specifies a bit printed to one and not printed to zero. At the default, user-defined characters are not defined and the internal character set is printed. Once the userdefined characters have been defined, they are available until [ESC] \$ is
executed; the user-defined characters are redefined; the power is turned off; or the printer is reset.

Note: User defined are bit ages and are not scalable. It is intended that user defined characters be defined using a custom TrueType font. That font may then be selected by the user's application.
[ESC] \$ Cancel user-defined characters
ASCII [ESC] \$
Hexadecimal 1BH 24H
Decimal <27> <36>
IPCL none
Description The [ESC] \$ command removes all user-defined characters from the printer's memory. After the user-defined characters are canceled, the internal character set is printed.
[ESC] > Enable user-defined characters
ASCII [ESC] $><n>$
Hexadecimal 1BH 3EH <n>
Decimal <27> <62> <n>
Range $<0>,<1>, 0$, or 1
1 Enables the characters
0 Disables the characters
IPCL none
Description The [ESC] > <n> command enables or disables the user-defined characters. The internal character set is printed.

## Character Attributes

[ESC] c Select color

ASCII [ESC] c <n>
Hexadecimal 1BH 63H <n>
Decimal <27> <99> <n>
IPCL \&\%CL <m $>$
EPOS none
Description The [ESC] c <n> command selects the print color, and should match the color of the paper installed.
Where <n> $0=$ Black
1 = Red
2 = Green
3 = Blue
[SO] Begin one-line double-wide print
ASCII [SO]
Hexadecimal 0EH

| Decimal | $<14>$ |
| :--- | :--- |
| IPCL | $\& \% M W$ |
| EPOS | none |

Description The [SO] command causes subsequent characters to be printed at twice the currently selected character width. For example, ten cpi becomes five cpi, 17 cpi becomes 8.5 cpi , etc. The [SO] command remains in effect until: A valid line terminator is received ([CR], [LF], or [ESC] J <n> (fine line feed)); The command is canceled; or the maximum number of characters per line is reached and the printer performs an auto-print.
[DC4] Cancel one-line double-wide print
ASCII [DC4]

Hexadecimal 14H
Decimal <20>
IPCL \&\%MN
EPOS none
Description The [DC4] command cancels one-line double-wide mode set by the [SO] command and allows single- and double-wide characters to be printed on the same line.
[ESC] _ Enable/Disable Strike Through

| ASCII | [ESC] $<$ <n> |
| :--- | :--- |
| Hexadecimal | 1 BH 5 FH 01 H |
| Decimal | $<27><95><n>$ |
| IPCL | $\& \%$ MO (Begin) |
| IPCL | $\& \% C O$ (End) |
| EPOS | $[E S C]!<n>$ |

Description The [ESC] _<1> command begins strike through print mode. All subsequent text, leading spaces, and trailing spaces are over-scored. [ESC] ${ }_{-}<0>$ ends the mode.
[ESC] W Multi-line double-wide and double-high mode
ASCII $\quad[E S C]$ W <n>
Hexadecimal 1BH 57H <n>
Decimal <27> <87> <n>
IPCL $\quad \% \%$ FD $\{n=1\}$
\&\%FS $\{n=0\}$
\&\%FHA $\{n=3\}$
(Note: Single-wide, double-high mode is not available in IPCL mode.)
EPOS [ESC]! <n>
Description The [ESC] W <n> command controls multi-line double-wide or doublehigh mode, where n specifies the mode:
$\mathrm{n}=0$ is standard single-wide and single-high;
$\mathrm{n}=1$ begins double-wide;
$\mathrm{n}=2$ begins double-high; and
$\mathrm{n}=3$ begins double-wide double-high.
Note: The [ESC] W <n> command does not affect line spacing.

Where n Bits 76543210 Function
1------- Underline
--1----- Double-wide
---1---- Double-high
-------X Font: $0=$ draft; 1 = large draft
[ESC] [ @ Set print style: double-wide, double-high, italic control
ASCII [ESC][ @ [EOT] [NUL] <k> [NUL] <n> <m>
Hexadecimal 1BH 5BH 40H 04H 00H <k> 00 H <n> <m>
Decimal <27> <91> <64> <04> <0> <K> <0> <n> <m>
IPCL \&\%DH Double-high, double-wide, and double-space
\&\%SH Single-high, single-wide, and single-space
Also, see [ESC] W above.
Description The [ESC] [ @ [EOT] [NUL] <k> [NUL] <n> <m> command sets doublewide, double-high, and italic print mode.
Where k bits k 76543210
----xxxx Italic control
0 ----0000 No change
1 ----0001 Italics On
2 ----0010 Italics Off
Where $\mathbf{n}$ bits $\mathbf{n} 7653210$
----0nnn Height multiplier (Maximum 4)
0 ----0000 No change
xxxx---- Line spacing
0 0000---- No change
Where mbits m 76543210
----0nnn Width multiplier (Maximum 4)
0 ----0000 No change

Note: The maximum height and width multiplier is four.
[ESC] - Begin underline

| ASCII | [ESC] $-<n>$ |
| :--- | :--- |
| Hexadecimal | 1 BH 2 DH 01 H |
| Decimal | $<27><45><n>$ |
| IPCL | $\& \% M U$ (Begin) |
| IPCL | $\& \% C U$ (End) |
| EPOS | $[E S C]!<n>$ |

Description The [ESC]-<1> command begins underline print mode. All subsequent text, leading spaces, and trailing spaces are underlined. [ESC] - <0> ends the mode.
Note: In EPOS mode, [ESC] ! <n> performs a similar function; however, near letter quality (NLQ) is not available.
[ESC] G Begin enhanced print
ASCII [ESC] G
Hexadecimal 1BH 47H
Decimal <27> <71>
IPCL \&\%ME
EPOS $\quad[E S C] G<1>$
Description All subsequent text is printed in enhanced print mode (two passes with a vertical offset). Enhanced printing provides a deeper resolution of each character and may enhance multiple part forms printing.
[ESC] H End enhanced print mode
ASCII [ESC] H
Hexadecimal 1BH 48H
Decimal <27> <72>
IPCL \&\%CE
EPOS $\quad[E S C] G<0>$
Description The [ESC] H command cancels enhanced print mode and returns to the currently selected font.
[ESC] E Begin emphasized print mode
ASCII [ESC] E
Hexadecimal 1BH 45H
Decimal <27> <69>
IPCL \&\%MM
EPOS [ESC] E <1>
Description The [ESC] E command begins emphasized print mode (one pass with horizontal offset). Emphasized print is bolder than normal print.
[ESC] F End emphasized print mode

ASCII [ESC] F
Hexadecimal 1BH 46H
Decimal <27> <70>
IPCL \&\%CM
EPOS [ESC] E <0>
Description The [ESC] F command cancels emphasized print mode.

## [ESC] S <0> Select superscript

ASCII [ESC] S <0>
Hexadecimal 1 BH 53 H 00 H
Decimal <27> <83> <0>
IPCL \&\%SP
EPOS none
Description The [ESC] S <0> command selects superscript. The following characters are printed half size on the upper side of the print line.

Note: Superscript is not available in all print modes.
[ESC] S <1> Select subscript
ASCII [ESC] S <1>
Hexadecimal 1BH 53H 01H
Decimal <27> <83> <1>
IPCL \&\%SB
EPOS none
Description The [ESC] $S<1>$ command selects subscript. The following characters are printed half size on the bottom side of the print line.

Note: Subscript is not available in all print modes.
[ESC] T End superscript or subscript
ASCII [ESC] T
Hexadecimal 1BH 54H
Decimal <27> <84>
IPCL \&\%SE
EPOS none
Description The [ESC] T command ends superscript or subscript.
[ESC] \% G Begin italics
ASCII [ESC] \% G
Hexadecimal 1BH 25H 47H
Decimal <27> <37> <71>
IPCL
\&\%MI
EPOS [ESC] 4
Description The [ESC] \% G command begins italic print mode.
Note: Italics are not available in all print modes.
[ESC] \% H End italics
ASCII [ESC] \% H
Hexadecimal 1BH 25H 48H
Decimal <27> <37> <72>
IPCL \&\%CI
EPOS [ESC] 5
Description The [ESC] \% H command ends italic print mode.

## Page Mode

The Model 9000 supports two operational modes: standard and page mode ${ }^{19}$. In standard mode, as a line of text is received it is buffered and printed when the line feed is received. In page mode the printer waits for a complete "page" (a number of lines) to be received before printing the complete page. The advantage of page mode is that text and/or graphics can be placed anywhere on the page, in any order, and in any of 4 orientations.

## How to use page mode

Page mode requires two phases to operate correctly.

1. Page definition
a. Define the master page size either just before or just after entering page mode.
b. Optionally define a sub page.

The master page defines the maximum page size, all sub pages must be smaller and contained within the master page. Master and sub page definitions are always done base on the 0 degree orientation not the current rotation.
c. Optionally set an orientation. This may be $0,90,180$ or 270 degrees.
d. Optionally set the entry position. This is based on the current sub page and the current rotation.
e. Enter text or graphics.
f. Go to step b to define additional sub pages or step c to change the orientation.
2. Print the page.

## Page Definition

The [ESC]t command will start page definition and define the initial orientation. An [ESC]t command during page definition will change the orientation and reset the entry location back to the top left corner of that orientation.


Figure 8 Page Mode Entry Orientations

[^11]The [ESC] u command wet the maximum page dimensions. Note that these dimensions are always based on 0 degree rotation.
Enter text and/or graphics as required.

## Auto-cutter and page mode

You may embed an auto-cutter command with in a page definition. The auto-cut command may be placed anywhere in the page definition, however, it will be processed after the page is printed. To prevent the cut from occurring in the page, it will be preceded with a feed that will place the end of the page about 0.125 inches above the auto-cut position.

## Mechanism commands in page mode

In general, mechanism commands received during page mode will be processed if the result will not affect the printed result.

## Stopping page mode definition

The following operations will stop a page mode definition:

1) [ESC]@ Printer initialize command.
2) Real time reset request [ENQ]<10>
3) Turning the printer off.

## Printing the page

The [FF] command starts the printing process.
Printing starts at the current paper position. The complete page definition is printed excluding any blank information at the bottom of the page.

If the [FF] command is used to print the page, the memory used to store the page image is not maintained and is released to be used by other functions.

## Page mode commands

| Function | Select page mode |
| :---: | :---: |
| ASCII | [ESC] $t<x>$ or [ESC] [SUB] t |
| Hexadecimal | $1 \mathrm{BH} 74 \mathrm{H}<x>$ or 1BH 1AH 74H |
| Decimal | <27><116><x> $\quad$ or <27><26><116> |
| IPCL | \&\%PM $<\mathrm{X}_{1}>$ |
| EPOS | [ESC] L |
| Description | This command activates page mode and sets the orientation. |
| This command may also be issued during page definition. When issued in page mode it resets the orientation and entry position, but does not cause the currently defined image to be erased or printed. |  |
| Where | $\mathrm{x}=0$ for standard orientation (Direction A ). |
|  | $x=1$ for $270^{\circ}$ Rotation (Direction B) |
|  | $x=2$ for $180^{\circ}$ Rotation (Direction C) |
|  | $x=3$ for $90^{\circ}$ Rotation (Direction D) |



Note 1: This command saves the current right and left margin and sets them to the maximum values for the orientation currently defined.
Note 2: During page mode definition almost all printer commands are active. The following table lists the exceptions.

| Command | Active | Action |
| :--- | :--- | :--- |
| Cash drawer <br> commands | Yes | Immediate action |
| Bell command | Yes | Immediate action |
| Auto cut commands | Delayed | The printer will perform a feed to cut and then operate the auto <br> cutter after the page is printed. The cut command may be <br> anywhere in the definition. If the page is printed twice, the Auto <br> cut command must be reissued after the first print to generate <br> additional cuts. |
| Electronic journal <br> station select | No | This command is like a station select and is not active. You <br> cannot store page mode images in the electronic journal. A <br> page mode command in journal station mode will exit journal <br> mode. |
| Electronic journal <br> entries | Yes | You can make journal entries as part of a page description. <br> They are saved as text and not part of the page. |
| Status requests | Yes | The status is returned during definition. |
| Printer initialize <br> command | Yes | Cancels page mode definition and returns the printer to standard <br> mode. |
| Set top of form | No | You must set the top of form outside of page mode. The form <br> position is maintained after the page is printed. |
| Vertical tab | No | The definition of a vertical tab is ambiguous in page mode and is <br> ignored. |
| Macro definitions | No | You can not define or delete a macro while in page mode. You <br> can, however, invoke a macro or stored graphic. You can not <br> enter page mode while in a macro definition. |

Note 3: Unless specified by a page mode set page size command, the default page size is the full paper width for about 6 inches. Printing starts at the current paper position. The complete page definition is printed excluding any blank information at the bottom of the page.
Function Set Print Area in Page Mode Enhanced

ASCII [ESC][SUB]S <XOL><XOH><< $\mathrm{YO}_{\llcorner }>\ll \mathrm{YO}_{H}><W_{L}><W_{H}><\mathrm{H}_{\llcorner }><\mathrm{H}_{H}>$
Hexadecimal 1BH 1AH $53 \mathrm{H}<\mathrm{XO}_{L}><\mathrm{XO}_{H}>\ll \mathrm{YO}_{L}><\mathrm{YO}_{H}><\mathrm{W}_{L}><W_{H}><\mathrm{H}_{L}><\mathrm{H}_{H}>$
Decimal $<27><26><83><\mathrm{XO}_{\llcorner }><\mathrm{XO}_{H}>\ll \mathrm{YO}_{L}><\mathrm{YO}_{H}><\mathrm{W}_{L}><\mathrm{W}_{H}><\mathrm{H}_{L}><H_{H}>$
IPCL None
EPOS [ESC] W
Description This command sets the position and size of the initial area in page mode and sub pages.
Where:

$$
\begin{array}{ll}
<\mathrm{XO}_{\mathrm{L}}><\mathrm{XO}_{\mathrm{H}}>\text { the } \mathrm{x} \text { direction offset } & \text { Min 0 } \\
<\mathrm{YO}_{\mathrm{L}}><\mathrm{YO}_{\mathrm{H}}>\text { the } y \text { direction offset } & \text { Min 0 } \\
<\mathrm{W}_{\mathrm{L}}><\mathrm{W}_{\mathrm{H}}>\text { the width in dots } & \text { Max } 576 \\
<\mathrm{H}_{\mathrm{L}}><\mathrm{H}_{\mathrm{H}}>\text { the height in dots } & \text { Max } 3000
\end{array}
$$

This command should always be sent before or immediately after page mode is entered to define the initial page size.

Once in page mode (after the [ESC]t command) the command can be sent multiple times so that several different print areas, aligned in different print directions, can be developed in the printer's page buffer before being printed using the Print Page Mode commands (FF or ESC FF).

The starting position of the print area is the upper left of the area to be printed. The Yoffset is in the y direction and is YO dots and the Xoffset is in the x direction and is XO dots in. The length of the area to be printed in the $y$ direction is set to H dots. The length of the area to be printed in the x direction is set to W dots.

The set print area command may be invoked multiple times while in page mode. The first invocation specifies the initial master page size. Following invocations will define smaller windows within the initially defined page. If the Set page size command is not used, the page size will default to the maximum size.

The orientation of the set print area command is always based on 0 degrees regardless of the current orientation setting. This includes if the command is sent before the start page mode command, after the start page mode command, or as a sub-page.


Note: The maximum printable area in the $x$ direction is $576 / 203$ or 3.15 inches.
Note: The maximum printable area in the $y$ direction is 2999/203 or 14.78 inches.
Note: Only the used portion of the page is printed. That is the page length will only include what actually has print data. See illustration below.


Figure 9 Page mode set printable area


Figure 10 Default Page mode printed area


This command should always be sent before or immediately after select page mode command and will define the initial page size. This command differs from the Set Print Area in Page Mode command in that it does not allow the page to be shortened. The complete page is printed even if it is not used.


Figure 11 Defined Page mode printed area

| Function | Set Print Area in Page Mode | Legacy Support Command |
| :---: | :---: | :---: |
| ASCII <br> Hexadecimal | [ESC] $u<O_{L}><O_{H}><W_{L}><W_{H}><H_{L}><H_{H}>$ |  |
|  | Hexadecimal 1BH $75 \mathrm{H}<\mathrm{O}_{\llcorner }><\mathrm{O}_{H}><\mathrm{W}_{\llcorner }><\mathrm{W}_{\mathrm{H}}><\mathrm{H}_{\llcorner }><\mathrm{H}_{H}>$ |  |
| Decimal $<27><117><\mathrm{O}_{L}><\mathrm{O}_{H}><W_{L}><W_{H}><\mathrm{H}_{L}><$ |  |  |
| IPCL \&\%PS<0000><WWWW><HHHH> |  |  |
| EPOS [ESC] W |  |  |
| Description | This command sets the position and size o page mode and sub pages. | the printing initial area in |
| Where: |  |  |
|  | $<\mathrm{O}_{\mathrm{L}}><\mathrm{O}_{\mathrm{H}}>$ the y direction offset Default (0) |  |
|  | $<\mathrm{W}_{\mathrm{L}}><\mathrm{W}_{\mathrm{H}}>$ the width in dots Default (576) |  |
|  | $<\mathrm{H}_{L}><\mathrm{H}_{H}>$ the height in dots Default (6000) |  |

This command should always be sent before or immediately after page mode is entered to define the initial page size.

Once in page mode (after the [ESC]t command) the command can be sent multiple times so that several different print areas, aligned in different print directions, can be developed in the printer's page buffer before being printed using the Print Page Mode commands (FF or ESC FF).

The starting position of the print area is the upper left of the area to be printed. The offset is in the y direction and is O dots. The length of the area to be printed in the y direction is set to H dots. The length of the area to be printed in the x direction is set to W dots. (Note that the Y offset is always 0 )

The set print area command may be invoked multiple times while in page mode. The first invocation specifies the final page height. Following invocations will define smaller windows within the initially defined page. If the Set page size command is not used, the page size will default to the maximum size.

The orientation of the set print area command is always based on 0 degrees regardless of the current orientation setting. This includes if the command is sent before the start page mode command, after the start page mode command, or as a sub-page.


Note: The maximum printable area in the $x$ direction is $576 / 203$ or 3.15 inches.
Note: The maximum printable area in the y direction is 5999/203 or 29 inches.
Note: The printed page length will only include what actually has print data.

| Function | Set Print Area Auto Size Enhanced |
| :---: | :---: |
| ASCII | [ESC] [SUB] Z <n> |
| Hexadecimal | 1BH 1AH 5AH <n> |
| Decimal | <27><26><90><n> |
| IPCL | None |
| EPOS | None |
| Description | This command Sets page auto size mode. This command must be sent to the printer before page mode is started. It modifies the way page mode works only printing the Y direction of the page that is actually used. This allows a large page to be defined but only what is actually used to be printed. This is useful when the page data is dynamically generated and the page length is not known until all the data is generated. |

Where: $\mathrm{n}=1$ to set auto page size and $\mathrm{n}=0$ to print the page length as defined.

| Function | Set Page Mode Entry Position |
| :---: | :---: |
| ASCII | [ESC] [SUB] $A<X_{L}><X_{H}><Y_{L}><Y_{H}>$ |
| Hexadecimal | 1BH 1AH 41H $\left\langle X_{L}><X_{H}\right\rangle\left\langle Y_{L}><Y_{H}>\right.$ |
| Decimal |  |
| IPCL | \&\%PY<XXXX><YYYY> |
| EPOS | [ESC] W |
| Description | This command sets the horizontal and vertical entry position to anywhere on the page. It is only valid in page mode. If the value specified is beyond the page boundary, the command is ignored. ( X and Y refers to the current active orientation specified by the [ESC]t command, and is not same as the page definition of $X$ and $Y$.) |
|  | The $X$ and $Y$ positions are in dots. |
|  | $Y=Y_{h}{ }^{*} 256+Y_{1}$ dots from the top |
|  | $X=X_{h}{ }^{*} 256+X_{l}$ dots from the left |

Note: You can also use the [ESC]J, [ESC]M. [ESC]d and [ESC]e commands to position the print on the page.

| Function | Set Page Mode Entry Position Relative |
| :---: | :---: |
| ASCII | [ESC] [SUB] $R$ < $X_{L}>\ll X_{H}><Y_{L}><Y_{H}>$ |
| Hexadecimal | 1BH 1AH 52 H < $\mathrm{X}_{L}><\mathrm{X}_{H}><\mathrm{Y}_{L}><Y_{H}>$ |
| Decimal | <27><26><82><< ${ }_{\text {L }}><X_{H}><Y_{L}><Y_{H}>$ |
| IPCL | None |
| EPOS | [ESC] W |
| Description | This command sets the horizontal and vertical entry position to anywhere on the page. It is only valid in page mode. If the value specified is |
|  | beyond the page boundary, the command is ignored. ( X and Y refers to |
|  | the current active orientation specified by the [ESC]t command, and is not same as the page definition of X and Y .) |
|  | The $X$ and $Y$ positions are in dots. |
|  | $Y=Y_{h}{ }^{*} 256+Y_{\text {, dots from the current }} Y$ |
|  | $X=X_{h}{ }^{*} 256+X_{l}$ dots from the current $X$ |

Note: You can also use the [ESC]J, [ESC]M. [ESC]d and [ESC]e commands to position the print on the page.

Function
Set Page Mode Entry Position
Legacy Support
ASCII
[ESC] $0<X_{L}><X_{H}><Y_{L}><Y_{H}><$ F $>$
Hexadecimal 1BH 6FH $<X_{L}><X_{H}><Y_{L}><Y_{H}><$ F $>$
Decimal $\left.\quad<27><111><X_{L}><X_{H}\right\rangle\left\langle Y_{L}><Y_{H}><F>\right.$
IPCL None
EPOS [ESC] W
Description This command sets the horizontal and vertical entry position to anywhere on the page. It is only valid in page mode. If the value specified is beyond the page boundary, the command is ignored. ( X and Y refers to the current active orientation specified by the [ESC]t command, and is not same as the page definition of $X$ and $Y$.)
The $X$ and $Y$ positions are in dots.
$Y=Y_{h}{ }^{*} 256+Y_{1}$ dots from the top
$X=X_{h}{ }^{*} 256+X_{1}$ dots from the left
The $F$ parameter is a flag that specifies if this command is an absolute position command or relative to the current position. If its value is $<1>$ the command is processed as a relative position command, and if its value is $\langle 0\rangle$ the command is interpreted as an absolute position command.

Note: You can also use the [ESC]J, [ESC]M. [ESC]d and [ESC]e commands to position the print on the page.

| Function | Set Page Mode Text Overlay | Enhanced |
| :--- | :--- | :--- |
| ASCII | $[E S C][S U B] O<n>$ |  |
| Hexadecimal | $1 B H 1 A H 4 F H<n>$ |  |
| Decimal | $<27><26><79><n>$ |  |
| IPCL | None |  |
| EPOS | None |  |

Description This command sets alters the way information is merged into the page. If Overlay mode is set inactive new data placed on the page is logically or'ed with the existing data. If Overlay is active new information is exclusive or'ed with the existing data.

Note: This command is only active during page definition and has no effect in normal operation. It may be issued before or after entering page mode.
Note: When you exit page mode, the feature is turned off until reactivated.

| Function | Set Page Mode Margins | Enhanced |
| :--- | :--- | :--- |
| ASCII | [ESC] [SUB] $M<L_{L}><L_{H}><W_{L}><W_{H}>$ |  |
| Hexadecimal | 1BH 1AH 4DH $<L_{>}><L_{H}><W_{L}><W_{H}>$ |  |
| Decimal | $<27><26><77><L_{L}><L_{H}><W_{L}><W_{H}>$ |  |
| IPCL | None |  |
| EPOS | None |  |

Description This command sets the print margins in dots. < $L_{L}><L_{H}>$ specify the left offset from the currently defined page and $\left\langle\mathrm{W}_{\mathrm{L}}><\mathrm{W}_{\mathrm{H}}\right\rangle$ specify the width. Both are in dots. If $\left.\left\langle W_{\mathrm{L}}\right\rangle<\mathrm{W}_{\mathrm{H}}\right\rangle$ is zero, the maximum width allowed by the current page is used.

Note: This command is active during page definition and redefining the page will set the margins to the edges of the page.
Note: This command is also active when not in page mode and will set the left and right margins based on dot columns.

| Function | Clear Page Mode Page | Enhanced |
| :--- | :--- | :--- |
| ASCII | [ESC $][$ SUB $]$ C |  |
| Hexadecimal | 1 BH 1AH $43 \mathrm{H}<n>$ |  |
| Decimal | $<27><26><67><$ n $>$ |  |
| IPCL | None |  |
| EPOS | None |  |

Description This command clears the data in the currently active page area. It allows the complete page or a portion to be erased and allow additional information to be added without the previous information being included

| Function | Exit Page Mode |  |
| :--- | :--- | :--- |
| ASCII | [FF] | or [ESC][SUB] P |
| Hexadecimal | 0 CH | or 1BH 1AH 50H |
| Decimal | $<12>$ | or $<27><26><80>$ |
| IPCL | $\& \%$ FF |  |
| EPOS | [FF] |  |

Description This command exits page mode definition and starts the print process. If the printer is not in page mode, this command is treated as a normal form feed command.

Note: When page mode finishes printing, the left and right margins are restored to the values before the select page mode command. All other format changes are preserved.

## Graphic Modes

The Model 9000 Printer conforms to the basic definition of IBM all-points-addressable (APA) graphic commands. It is not designed to print large quantities of graphical data. The printer only prints graphics that are 2.5 inches wide. At this time, there is not a graphics mode for Epson emulation.

The Model 9000 Printer always prints in one of the native resolutions of $104 \times 96,208 \times$ $96,104 \times 192$, or $208 \times 192$ dpi. To provide compatibility with the standard IBM APA resolutions, the printer internally modifies the graphics to print as expected. The printer converts the vertical resolution by altering the [ESC] J command (which is typically used for vertical spacing) and adjusting it so that horizontal passes touch as expected. The requested horizontal resolution is converted by data scaling. Because the vertical dpi of the printer is always greater, the resulting APA graphics printed on the Model 9000 Printer are slightly smaller than the same graphic printed on an impact printer. All of this is done transparently to the application; however, loss of resolution may result in some modes. If desired the [ESC] * <m> command can be used to select the native resolution.


Note 1: If the Model 9000 Printer is used with programs that convert text to graphics, the printer is slower than if the printer is sent ASCII text. The Model 9000 Printer is supported by a Windows' print driver that allows applications to select supported fonts.

Note 2: Generally, the horizontal graphic commands provide faster print than the APA graphic commands.

Standard APA Graphics
[ESC] K Print single-density graphics (60h x 72v dpi)
ASCII $\quad[E S C] K<n_{1}><n_{2}>$

Hexadecimal 1BH 4BH <n $\left.><\mathrm{n}_{2}\right\rangle$
Decimal <27> <75> <n $n_{1}><n_{2}>$
IPCL none
Description The [ESC] $\mathrm{K}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ command prints $<\mathrm{n}_{1}>+256$ * $<\mathrm{n}_{2}>$ bytes of single-density graphics ( 60 dpi ).
[ESC] L Print half-speed double-density graphics (120h x 72v dpi)
ASCII [ESC] L <n $\mathrm{n}_{1}><\mathrm{n}_{2}>$
Hexadecimal 1BH 4CH $\left.<\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle$
Decimal <27><76><n><n>
IPCL none
Description The [ESC] L $<n_{1}><n_{2}>$ command prints $<n_{1}>+256^{*}<n_{2}>$ bytes of double-density graphics ( 120 dpi ) at half speed, allowing full and half dots to be printed.
[ESC] Y Print full-speed double-density graphics (120h x 72v dpi)
ASCII $\quad[E S C]$ Y $\left\langle n_{1}><n_{2}>\right.$
Hexadecimal 1BH 59H $\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle$
Decimal <27> <89> <n $n_{1}><n_{2}>$
IPCL none

Description The [ESC] Y <n $n_{1}><n_{2}>$ command prints $<n_{1}>+256$ * $<n_{2}>$ bytes of double-density graphics (120 dpi) at full speed with no consecutive dots. (The mode is generally used to print 120h by 144 v dpi resolutions in two passes).
[ESC] Z Print quad-density graphics (240h $\times 72 \mathrm{v}$ dpi)
ASCII $\quad[E S C] Z<n_{1}><n_{2}>$
Hexadecimal 1BH 5AH $<n_{1}><n_{2}>$
Decimal <27> <90> <n $n_{1}><n_{2}>$
IPCL none
Description The [ESC] $\left.Z<n_{1}\right\rangle\left\langle n_{2}>\right.$ command prints $\left.<n_{1}\right\rangle+256^{*}<n_{2}>$ bytes of quaddensity graphics ( 240 dpi ) at half speed with no consecutive dots. (The mode is generally used to print 240 h by 144 v dpi resolutions in two passes).

## Extended APA Graphics

[ESC] * Print graphics in mode <m> (60h/ 120h/ 240h x 72v dpi)
ASCII [ESC] * $<m><n_{1}><n_{2}>$
Hexadecimal 1BH 2AH $\langle\mathrm{m}\rangle\left\langle\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle$
Decimal <27> <42> <m><n $\rangle\left\langle n_{2}\right\rangle$
IPCL
none
Description The [ESC] * $\langle m\rangle\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle$ command selects one of three graphic modes as specified by $<\mathrm{m}>$.

| Where $<$ m> | 0 | 60 dpi | Full speed | 8-bit slices |
| ---: | :--- | :--- | :--- | :--- |
|  | 1 | 120 dpi | Half speed | 8-bit slices |
| 2 | 120 dpi | Full speed | 8-bit slices |  |
|  | 3 | 240 dpi | Full speed | 8-bit slices |
|  | 4 | 80 dpi | Full speed | 8-bit slices |
| 5 | 72 dpi | Full speed | 8-bit slices |  |
|  | 6 | 90 dpi | Full speed | 8-bit slices |
|  | 7 | 144 dpi | Full speed | 8-bit slices |

8,9 Not supported
$10104 \times 96$ dpi
1 horizontal 1 vertical pass
$11208 \times 96$ dpi 2 horizontal 1 vertical pass
$12104 \times 192$ dpi 1 horizontal 2 vertical passes
$13208 \times 192$ dpi 2 horizontal 2 vertical passes

## [ESC] ? Reassign graphic mode

ASCII [ESC]? <m> <n>

| Hexadecimal | $1 \mathrm{BH} 3 \mathrm{FH}<\mathrm{m}><\mathrm{n}>$ |
| :--- | :--- |
| Decimal | $<27><63><\mathrm{m}><\mathrm{n}>$ |
| IPCL | none |

Description The [ESC] ? <m> <n> command reassigns graphic mode <m> to resolution <n>. Possible values for <m> are K, L, Y, or Z. Resolutions, <n>, are zero to seven as follows:

| Where <m> | 0 | 60 dpi | Full speed | 8-bit slices | Default for K |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 120 dpi | Half speed | 8 -bit slices | Default for L |
|  | 2 | 120 dpi | Full speed | 8-bit slices | Default for Y |
|  | 3 | 240 dpi | Full speed | 8 -bit slices | Default for Z |
|  | 4 | 80 dpi | Full speed | 8 -bit slices |  |
|  | 5 | 72 dpi | Full speed | 8 -bit slices |  |
|  | 6 | 90 dpi | Full speed | 8 -bit slices |  |
|  | 7 | 144 dpi | Full speed | 8 -bit slices |  |
|  | 10 | $104 \times 96$ dpi | 1 horizonta | vertical pass |  |
|  | 11 | $208 \times 96$ dpi | 2 horizonta | vertical pass |  |
|  | 12 | $104 \times 192$ dpi | 1 horizonta | vertical pass |  |
|  | 13 | $208 \times 192$ dpi | 2 horizonta | vertical pass |  |

Note: Modes 11 through 13 are designed to support horizontal graphics and not intended for APA graphics.
[ESC] U <1> Select unidirectional print
ASCII $\quad[E S C] \cup<1>$
Hexadecimal 1 BH 55 H 01 H
Decimal <27> <85> <1>
IPCL \&\%GU
EPOS $\quad$ ESC] $U<1>$
Description The [ESC] $U<1>$ command prints all data in unidirectional print mode to improve line to line registration for graphical data.

Note: Unidirectional print should be canceled before normal text is printed. Print time is slowed if it is not canceled.
[ESC] U <0> Select bidirectional print
ASCII [ESC] U <0>
Hexadecimal 1BH 55H 00H
Decimal <27> <85> <0>
IPCL \&\%GB
EPOS $\quad[E S C] \cup<0>$
Description The [ESC] U <0> command prints all data in bi-directional, logic-seeking print mode. (This command has no affect on the printer but is provided for compatibility with impact and inkjet printers.

## Horizontal Graphics (Raster/Color/Gray Graphics)

The Model 9000 Printer supports graphics sent as horizontal scan lines. Individual scan lines of graphic data are sent to the printer one line at a time. Although the Model 9000 Printer only supports two colors, the horizontal graphic command interface gives color or gray scale support for printer graphics. Color support is provided to establish a full color standard for future printers. Color data is sent in one of three color planes. Typically, a red plane or scan line is sent, then green and blue. Gray scale support is provided by using the red, green and blue as gray levels. The sequence of lines defines one row of dots that is printed on the paper.

The horizontal graphic commands do not include resolution information. Therefore, only once before sending graphics data, set the graphics resolution by sending the [ESC] * command with a zero length (no data). The graphic resolution sets the internal graphic mode of the printer. The printer stays in graphic mode until it is changed by another command. Note that the bar code generation and other graphic commands change graphics mode. The format of the horizontal graphic command follows.

| [ESC] h | Process horizontal graphics data |
| :---: | :---: |
| ASCII | [ESC] h <color> <length> <format> <data> |
| Hexadecimal | 1 BH 68 H |
| Decimal | <27> <104> |
| IPCL | None |
| EPOS | None |
| Description | The [ESC] h <color> <length> <format> <data> command processes horizontal graphic data, where <color> is a byte that specifies the color of the data being sent. |
| <color> = | 0 Use Previously Selected Color |
|  | 1 Red Gray |
|  | 2 Green or Light Gray |
|  | 4 Blue Dark Gray |
|  | Note 1: If the printer is configured for Gray scale paper, this command is used for gray scale graphics. |
|  | Note 1: Red, green, and blue pixels set to one at the same location result in a white dot, while red, green, and blue pixels set to zero form a black dot. For black print, one represents a black dot and zero represents a white dot. |
|  | Note 2: More than one color may be set at a time, for example, setting the color to six would set green and blue simultaneously |
|  | Note 3: Horizontal Color graphics is not compatible with Page Mode. |
| <length> = | byte specifying the length of the data including the format byte, ranging from 0 to 254 ( 255 is reserved for future use.) |
| <format> = | byte specifying the format of the graphics data. |
|  | 0 for raw data |
|  | 1 for bit wise RLE compression |

8 for byte wise RLE compression
254 for difference compression
255 for same as previous scan line data
<data> = the data bytes that define the graphics to be printed.
[ESC] * Set horizontal graphic mode
ASCII [ESC] * $<\mathrm{m}><0><0>$
Hexadecimal 1BH 2AH <m> <0> <0>
Decimal <27> <42> <m> <0> <0> IPCL none

Description The [ESC] * $<m><0><0>$ command selects one of the three graphic modes specified by <m>. The two bytes after the mode must be zero.
Where <m> 0,2,3,4,5,6,7 Standard Graphic Modes (See ESC * command documentation in previous section.)
8,9 Not supported
$10 \quad 102 \times 102 \mathrm{dpi} 1$ horizontal, 1 vertical pass
$11203 \times 102$ dpi 2 horizontal, 1 vertical pass
$12102 \times 203$ dpi 1 horizontal, 2 vertical passes
$13203 \times 203$ dpi 2 horizontal, 2 vertical passes
14,15,16 Not supported

Example

Note 1: Only modes 10 thorough 13 should be selected for horizontal graphics.

Command
[ESC] * <10> <0> <0>
[ESC] h <1> <9> <0> <eight data bytes>
[ESC] $\mathrm{h}<2><9><0><$ eight data bytes>
[ESC] $\mathrm{h}<3><9><0><$ eight data bytes>

LF Send line feed to force print of any buffered data not yet printed.
Note 2: Graphic data is committed to paper when more than 12 dot rows have been transmitted to the printer. If less than 12 dot rows have been sent, they are not printed until the line is terminated (i.e. a line feed command is sent). To make graphics faster to send and smaller to store, several algorithms are included with the graphic command to compress the data.

## Graphics Compression

Although the printer compression algorithms are documented, it is recommended that our Windows' printer driver be used to generate a graphic image. Our Windows' printer driver selects the best compression method to use on a scan line by scan line basis. The print driver can be directed to print to file, creating a .prn file. When creating a .prn file, it is recommended that the Start/End Doc settings be cleared in the Start/End Doc tab of the printer properties page. After the .prn file is created, it can be read and sent to the printer by the host application.

Bit wise RLE. In bit wise RLE compression, the Most Significant Bit (MSB) compression of each data byte denotes if the compressed data represents one or zero bits. Bits zero through six indicate how many bits are represented as a one or zero. A $34 \mathrm{Hex}(34 \mathrm{H})$ represents 34 H bits set to zero. A 97 H represents 17 H bits set to one.
[ESC] h <1> <5> <1> <34H $>$ <97H $><8 \mathrm{fH}><09 \mathrm{H}>$
Byte wise RLE. In byte wise RLE compression, data is represented in byte Compression pairs. The first byte is a count, and the second is the graphics data. The graphics data byte is repeated the number of times represented by the count byte.
[ESC] $h<1><5><8><09 \mathrm{H}><$ ffH $><02 \mathrm{H}><55 \mathrm{H}>$
Where $<09 \mathrm{H}><\mathrm{ffH}>$ means repeat ffH nine times and $<02 \mathrm{H}><55 \mathrm{H}>$ means repeat 55 H two times.

Difference Compression. In difference compression, data is represented in byte pairs. In compression, the first byte is an index into the byte stream, as it would exist if sent in an uncompressed format. The second byte is the data that is different in the new scan line data. Think of compression mode as, "The scan line is the same as the previous except for the byte at a specific position."
[ESC] h <1> <5> <254> <03H> <d5H> <0bH> <51H>
Where $<03 \mathrm{H}><\mathrm{d} 5 \mathrm{H}>$ means use the previously transmitted scan line data but change byte 3 to a d5H and change byte $11(0 \mathrm{bH})$ to a 51 H .

Same-as-previous Compression. In same-as-previous compression, the command does not contain any graphics data. The command specifies that the printer is to use the previous scan line data for the current scan line.
[ESC] h <1> <1> <255>.

## Simple Raster Graphics

Simple Raster Graphics prints a horizontal raster of graphics data one or multiple times. Horizontal offset and number of data bytes are variable and specified by parameters. This is a legacy support command and intended to be replaced by compressed color horizontal graphics commands. This command does not support compression or color graphics.
[ESC] . Simple raster graphic mode
ASCII [ESC].mnrLrHd1...dn
Hexadecimal 1BH 2EH mnrLrH d1...dn
Decimal <27> <46> mnrLrHd1...dn
IPCL
none
Description The [ESC]. command is a simple method of printing raster graphics, however the format does not support compression or color.

## Where:

$\mathrm{m}: \quad$ horizontal offset from left margin $=8 \times \mathrm{m}$ dots
n : number of data bytes that compose the raster
$r$ : number of times the raster is to be printed $=256 \times \mathrm{rH}+\mathrm{rL}$
d1...dn: data bytes
Range: $\quad 0<=\mathrm{m}<=80$
$0<=\mathrm{n}<=80$
$0<=r<=65535$
$0<=\mathrm{d} 1 . . \mathrm{dn}<=255$
Note: This command can produce graphics that are difficult to print. Results can be unpredictable when very dark and very light sections are repeated.

## Bitmap Graphics File Support

The Model 9000 printer supports direct printing of Monochrome, 4 bit-16 color, 8 bit-256 color, 24bit True color bitmap files. The image may be directly printed or saved temporarily and scaled at 1 to 1 or 2 to 1 . Printing in Monochrome, two color or gray scale is supported based on paper selection.

Color bitmaps are converted to a grayscale representation of its luminance by adding together $30 \%$ of the red value, $60 \%$ of the green value, and $10 \%$ of the blue value. These weights are predefined in the printer and are close to the industry standard $30 \%$, $59 \%$ and $11 \%$. Two color print is based on the luminance with color weighting of the selected paper color. Grayscale print is based only on the luminance value.


Note: Where as the printer will process and print an 8 bit or 24 bit color image, the actual print will be Monochrome, two color or grayscale. The printer will translate the color image based on its own rules so the resulting image may not be as you intended. In addition, the amount of data in an 8 or 24 bit color bitmap is extensive. The time required to transfer the image will be much longer than the same monochrome image. You are much better off converting the image to Monochrome or 16 colors within your application.

## [ESC] [FS] Print Bitmap File Record

ASCII [ESC] [FS] <Bitmap file data>
Hexadecimal 1BH 1CH
Decimal <27> <28>
IPCL None
EPOS None
Description The [ESC][FS] command is actually a group of commands intended to print graphics. All bit map files begin with "BM" so when the bitmap data is sent after the [ESC][FS], the command is really [ESC][FS] B, This command accepts Monochrome and 16 color bitmap files and saves it as a temporary RAM file. The image may then be printed with the [ESC][FS]p command or saved in the file system with and [ESC][FS]S command.

Note: A Bitmap graphic file may also be written to the Model 9000's file system using the file system commands. It can then be printed by the [ESC][FS]P command. In this case, it is not saved in the temporary file so the [ESC][FS]p does not work.

## [ESC] [FS] p Print bitmap image buffer.

ASCII [ESC][FS] p<Scale>
Hexadecimal 1BH 1CH 70H
Decimal <27> <28><112>
IPCL None
EPOS None
Description The [ESC][FS] p command prints a bitmap image in the temporary buffer.
Where Scale $0=$ one to one.
1 = twice the width
2 = Twice the height
$3=$ Twice the height and width.
The intent of this command is to allow a bitmap file to be loaded into the Model 9000 and printed scaled up to 2 to 1 . Use the [ESC] [FS] <Bitmap file data> command to load the bitmap image and the [ESC][FS] $p$ to print it.

Note: The temporary buffer is also used for various other commands. If the data in the buffer is not a bitmap graphic, it won't be printed by this command.

## [ESC] [FS] P Print Bitmap File Print

ASCII [ESC] [FS] P<Bitmap file data>
Hexadecimal 1BH 1CH 50H
Decimal <27> <28><80>
IPCL None
EPOS None
Description The [ESC][FS] P command accepts Monochrome, 16 color, 256 color and 24bit color bitmap files and prints them immediately bit for bit with no scaling.

## [ESC] [FS] P Print Saved Bitmap File Print

ASCII [ESC] [FS] P <Scale><File Name><0>
Hexadecimal 1BH 1CH 50H <Scale><File Name><0>
Decimal <27> <28><80><Scale><File Name><0>
IPCL None
EPOS None
Description The [ESC][FS] P command followed by a value that is not ' B ' selects a scale, retrieves a graphic file named in the File Name field and prints it at the selected scale. This graphic file must previously have been defined and saved by the [ESC][FS] command and the [ESC][FS]S command or by writing a bitmap file to the file system with file system commands.

Where Scale $0=$ one to one.
1 = twice the width
$2=$ Twice the height
$3=$ Twice the height and width.


Note: The [ESC][FS] P command looks for graphic files defined by the [ESC][FS] S command first. If the Model 9000 cannot find a .bgp command, it will search for a .bmp file. If there are two files with the same root name, the .bgp file will be processed.

## [ESC] [FS] S Save Bitmap File Print

ASCII [ESC] [FS] S <File Name><0>

| Hexadecimal | 1 BH 1 CH 53 H <File Name><0> |
| :--- | :--- |
| Decimal | $<27><28><83 \gg<$ File Name><0> |
| IPCL | None |
| EPOS | None |

Description The [ESC][FS] S accepts a file name and saves the previously defined bitmap file in the RAM file system to the Flash file system. If the file already exists, the existing file will be erased.

Note: The [ESC][FS] S command erases the RAM file so the [ESC][FS] p will no longer print the saved image.
Note: This command followed by a zero length file name will flush the stored graphic image.

## User Store (Graphic Save)

The Model 9000 Printer maintains a 16K (16384 bytes) section of flash memory and up to 192 K of extended flash memory to save user information. The information can be either macros or user-defined characters. These groups of data are indexed by name, and may be called up at any time after they are stored. See the sections on Macros and User-defined Characters for definitions of these functions.

To allow the host application to maintain these groups of data, a series of user store maintenance commands are available. As referenced earlier in this manual, the user can define a limited number of custom characters and define a macro. These character/macro definitions can also be saved in user store. However, only one character definition and one macro can be active at any time. One macro and one userdefined character definition can be flagged to load and run at startup. If a flag is set, the printer will automatically process the macro and/or load the user-defined character set at initialization.

Because user store is intended to be loaded only a few times and then printed as part of normal operation, the programmer must take some care during the definition phase. The programmer must assume the responsibility to assure the 16K buffer size is not exceeded. User store can save macros and user-defined character sets.

When the basic user store is full, it can be moved to extended user store. Individual items in the extended user store can not be erased. The entire extended user store must be erased all at once. You may place two items in user store with the same name and the last defined item will be used.

## Defining Macros

Macros can be defined two ways. The first is by using the begin and end named macro commands. These commands start the recording process and automatically save the macro when it is complete. The macro data is not processed, as it is sent to the printer.

| Function | Begin named macro record |
| :--- | :--- |
| ASCII | $[E S C][U S] b$ Name.. $><0>$ |
|  | Then send the data to be recorded. The printer does not process the |
|  | data. The terminating <0> may be replaced with an \& or redefined. See |
|  | $[E S C][E M] T<n>$ or $\& \% U T<n>$ on page 125. |


| Function | End name macro record |
| :--- | :--- |
| ASCII | [ESC] [US] e <Name.. $<0>$ |
|  | The second way to define macros is to use [ESC] g commands to define |
|  | the macro, and then the save macro data command to save the data. |
|  | The terminating <0> may be replaced with an \& or redefined. See [ESC] |
|  | $[E M]$ $<n>$ or $\& \% U T<n>$ on page 125. |


| Function | Start macro record |
| :--- | :--- |
| ASCII | $[E S C] g<1>$ Then send the data to be recorded. (The data is processed |
|  | and printed). |


| Function | Stop macro record |
| :--- | :--- |
| ASCII | $[E S C] g<2>$ Then save the macro. |


| Function | Save macro data |
| :--- | :--- |
| ASCII | [ESC][US] $m<$ Name..><0> |
|  | Saving User-defined Characters. To save user-defined characters, first <br> define the character set. |

Function Define user-defined characters
ASCII
[ESC] $=\langle\mathrm{y}\rangle\left\langle\mathrm{c}_{1}\right\rangle\left\langle\mathrm{c}_{2}\right\rangle\left[\mathrm{x}_{1} \mathrm{~d}_{1} \ldots \mathrm{~d}\left(\mathrm{y} x \mathrm{x}_{1}\right)\right] \ldots\left[\mathrm{xk} \mathrm{d}_{1} \ldots \mathrm{~d}(\mathrm{y} x \mathrm{xk})\right]$ Second, save the definition in the nonvolatile flash memory with the appropriate command.
Save the definition. Note the "Save user-defined characters" command saves all three character definitions.

| Function | Save user-defined characters |
| :--- | :--- |
| ASCII | [ESC] [US] c <Name.. $>0>$ |
|  | Third, load the character set or load and run the macro. <br> To restore the character definitions, issue a load item command with the <br> name of the character set to be loaded. |
| The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or |  |
| $\& \% U T<n>$ on page 125. |  |

Function Load item from user store
ASCII [ESC] [US] I <Name..> <0>
If the item referenced is a user-defined character set, it is loaded into the current definition. If it is a macro, it is loaded into the macro buffer. It is not processed or printed.
To help maintain the user-store area, the following commands can be used.
The terminating $<0>$ may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125.

## Function Flag as a start-up macro

ASCII [ESC][US] s <Name..> <0>
The [ESC] [US] s <Name..> <0> command flags the referenced item to be processed at startup. No more than one user character definition and user data item may be flagged.
The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125.

| Function | Remove item from user store |
| :--- | :--- |
| ASCII | [ESC] [US] e <Name.. $><0>$ |
|  | The [ESC] [US] e <Name.. $>0>$ command removes an item from user |
|  | store and frees up its space. The terminating <0> may be replaced with |
|  | an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125. |


| Function | Flush information from user store |
| :---: | :---: |
| ASCII | [ESC] [US] f ALL <0> Base User Store |
| or | [ESC] [US] f EXT <0> Extended User Store. |
| Description | The [ESC] [US] f ALL <0> command clears all of the information to the user store and frees the data space. The [ESC] [US] f EXT <0> command clears all of the information in the extended the user store. |
| The termina \&\%UT<n> on | <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or 125. |

Function Report on user store
ASCII ESC][US] q <0>

Description The [ESC] [US] q <0> prints or returns information about the contents of and available space in user store.

Note: A configuration option is available that locks the user store data. The configuration option prevents the occurrence of new user store data operation until the lock is manually reset and accidental deletion of the saved information. The user-defined character buffer and/or user data buffer may be redefined and used but cannot be stored.

The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125.

## User-Store Commands

| Function | Begin named macro record |
| :---: | :---: |
| ASCII | [ESC] [US] b <Name..> <0> |
| Hexadecimal | 1BH 1FH 62H |
| Decimal | <27> <31> <98> |
| IPCL | \&\%UB <Name..> <0> |
| EPOS | none |
| Description | The [ESC] [US] b <Name..> <0> command erases the current macro, initializes the macro buffer structure, and redirects the following data to the macro buffer. It uses the <Name..> field as a reference. If the name already exists in the flash user store, the command is ignored. The command must be followed by the "End name macro record" command with the same name. If the data that follows is larger than the macro buffer (about 16K), the macro definition is terminated without saving any data. |
| The terminatin $\& \% U T<n>$ on | g <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or page 125 . |


| Function | End named macro record |
| :--- | :--- |
| ASCII | [ESC] [US] e <Name..> <0> |

Hexadecimal 1BH 1FH 65H
Decimal <27> <31> <101>
IPCL $\quad \% \% U G$ <Name..> <0>
EPOS none
Description The [ESC] [US] e <Name..> <0> command ends the macro record operation and saves the macro to flash. It uses the <Name..> field to verify the command end and must match the "Begin named macro record" command. If the name already exists in the flash user store or the macro memory is exceeded, the command is valid, and the <Name..> field prints. If there is not enough room in the flash user store for the macro, the save is not performed, but the macro buffer is valid.
The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125.

| Function | Save macro data in user store |
| :---: | :---: |
| ASCII | [ESC] [US] m <Name..> <0> |
| Hexadecimal | 1BH 1FH 6DH |
| Decimal | <27> <31> <109> |
| IPCL | \&\%UM <Name..> <0> |
| EPOS | [GS] $-\ldots<$ Name.. $><0>$ is from one to 15 characters and must be null terminated. |
| Description | The [ESC] [US] m <Name..> <0> command saves the current macro buffer structure into the flash user-store area. It uses the <Name..> field as a reference name. If the name already exists in the flash user store, the command does not store the data. |

The terminating $<0>$ may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125.

| Function | Save user-defined characters |
| :--- | :--- |
| ASCII | [ESC] [US] c <Name.. $><0>$ |
| Hexadecimal | 1 BH 1FH 63 H |


| Function | Load item from user store |
| :--- | :--- |
| ASCII | [ESC] [US] I <Name..> <0> |

Hexadecimal 1BH 1FH 6CH
Decimal <27> <31> <108>
IPCL \&\%UL <Name..> <0>
EPOS [GS] $0<$ Name.. $><0>$ is from one to 15 characters and must be null terminated.
Description The [ESC] [US] I <Name..> <0> command loads the referenced item into the appropriate structure. If the item referenced is a user-defined character set, it is loaded into the current user-character definition, which does not affect the active state of user-defined characters. If it is a macro, it is loaded into the macro buffer, but it is not inserted into the data stream. [ESC] g $<0>$ inserts the macro buffer into the data stream. If the named item does not exist, the command does nothing.
The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT>n> on page 125.

| Function | Run macro data from user store |
| :---: | :---: |
| ASCII | [ESC] [US] r < Name..> <0> |
| Hexadecimal | 1 BH 1 FH 72 H |
| Decimal | <27> <31> <114> |
| IPCL | \&\%UR < Name..> <0> |
| EPOS | [GS] $0<$ Name..> < $0>$ is from one to 15 characters and must be null terminated. |
| Description | The [ESC] [US] r <Name..> <0> command loads the referenced macro into the macro buffer. The macro buffer is then inserted into the data stream. If the named item does not exist or is not a macro, nothing happens. |

The terminating $<0>$ may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT<n> on page 125.

| Function | Flag item as a start-up macro |
| :---: | :---: |
| ASCII | [ESC] [US] s <Name..> <0> |
| Hexadecimal | 1BH 1FH 73H |
| Decimal | <27> <31> <115> |
| IPCL | \&\%US <Name..> <0> |
| EPOS | [GS] $0<$ Name.. $><0>$ is from one to 15 characters and must be null terminated. |
| Description | The [ESC] [US] s <Name..> <0> command flags the referenced item to be processed at startup. Only one user character definition and one macro may be flagged to run at startup. |

Note: If a character definition is loaded at startup, it is automatically made active.

The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or $\& \% U T<n>$ on page 125 .

| Function | Delete item from user store |
| :---: | :---: |
| ASCII | [ESC] [US] d <Name..> <0> |
| Hexadecimal | 1BH 1FH 64H |
| Decimal | <27> <31> <100> |
| IPCL | \&\%UD <Name..> <0> |
| EPOS | [GS] $1<$ Name..> <0> is from one to 15 characters and must be null terminated. |
| Description | The [ESC] [US] d <Name..> <0> command removes an item from user store and frees up space. If the item does not exist, the command does nothing. |

The terminating $<0>$ may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT>n> on page 125.

| Function | Transfer all items from user store to extended user store. |
| :--- | :--- |
| ASCII | [ESC] [US] t<0> |
| Hexadecimal | 1 BH 1 FH 74 H |
| Decimal | $<27><31><116>$ |
| IPCL | $\& \% U X<0>$ |
| EPOS | None |
| Description | This command transfers the information in the base 16 K user store to the <br>  <br>  <br>  <br>  <br> extended user store. The base user store is erased if the transfer was <br> successful. |

The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT>n> on page 125.

Function Flush information from user store or extended user store
ASCII [ESC][US] f ALL <0> User Store.
Or [ESC][US] f EXT <0> Extended User Store.
Hexadecimal 1BH 1FH 66H 00H
Decimal <27> <31> <102> <0>
IPCL \&\%UF
EPOS [GS] 5
Description The [ESC] [US] f ALL <0> command clears all entries in user store and frees the data space. It must have the name, "ALL" (in uppercase) attached. If "EXT" is substituted for "ALL", extended user store (If any) is cleared.
The terminating <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or \&\%UT>n> on page 125.

| Function | Report on user store |
| :---: | :---: |
| ASCII | [ESC] [US] q <0> Print a user store report |
| Or | [ESC] [US] ? <0> Return a formatted user store report |
| Hexadecimal | 1BH 1FH 71H |
| Decimal | <27> <31> <113> |
| IPCL | \&\%UQ <Name..> <0> |
| EPOS | [GS] 3 |
| Description | The [ESC] [US] q <Name..> <0> command prints a status report. The file name is ignored and may be omitted. The NUL must be present. The intention of the command is to aid in macro development. |
| The terminatin $\& \% U T<n>$ on | ing <0> may be replaced with an \& or redefined. See [ESC] [EM]T<n> or page 125 . |

Note: The report is also printed as part of the configuration report.

Function Redefine User Store Termination Character
ASCII [ESC] [EM] T <n>
Hexadecimal 1BH 19H 54H <n>
Decimal <27> <25> <84> <n>
IPCL \&\%UT <n>
EPOS None
Description This command allows the terminator used to signal the end of the name field in User Store commands to be modified. The value of <n> is used (in addition to the $<0>$ ) for the terminator. The value of $n$ may be from 0 to 255.
The default value for the second terminator is \&. If this command redefines the terminator to something other than \& , the \& will no longer function.
Example If \&\%UT\% were sent to the printer, the user store command to run macro
"Demo" would be \&\%URDemo\%.

## User Macros

The user macro feature works by inserting the macro data buffer into the printer data stream when the print user-store data command is encountered.

Macros can be any data normally sent to the printer including graphics. (Note: user-store maintenance and inquire commands may not be included in the macro definitions.) The printer stores macro data in a RAM-based storage buffer as it is received and processed. The storage buffer may then be saved to a flash-based user store or inserted into the print data stream. If a macro is recalled from user store, it is expanded into the macro buffer and replaces whatever is currently there.

## Programming Considerations

The flash (nonvolatile) memory has a limited number of write cycle operations.
Consequently, the number of saves should be limited. The buffer should not be saved on a transaction by transaction basis, but rather a maximum of once per day.

The buffer is initially about $16 \mathrm{~K}^{20}$ bytes long. All commands ${ }^{21}$ and print data are placed in the buffer and must be included in the size limits. The printer does not indicate when the buffer is full. The application must make sure that the buffer is not overfilled. The printer simply stops saving information when it is full. As the buffer fills, the input data is printed normally. The effect of the macro start command is to clear the buffer and to start to save the input data. The macro stop command stops saving data and initializes internal pointers for the next print. To store the data in the nonvolatile flash, it must be named and saved by one of the user-store save commands.

When the macro buffer is inserted into the data stream, configuration commands (like font or pitch changes) remain in effect after the macro is processed. Illegal commands are placed in the buffer and take up space.

Horizontal color graphics should be sent to the printer compressed. If the data is not compressed, it is saved in the macro buffer. If the buffer is saved into the user-store nonvolatile flash, there must be enough room in the user store for all of the data. As user-store space is used, the macro buffer will be larger than the available space in user store. Only the used space is saved, but it is possible to define a macro that does not fit in the remaining user-store space.

[^12][ESC] g <0> Process user macro
ASCII [ESC] g <0>
Hexadecimal 1BH 67H 00H
Decimal <27> <103> <0>
IPCL \&\%GP
EPOS $[E S C] g<0>$
Description The [ESC] g <0> command prints the user-store data buffer.
[ESC] g <1> Start macro record

ASCII [ESC]g<1>
Hexadecimal 1BH 67H 01H
Decimal <27> <103> <1>
IPCL \&\%GS
EPOS ESC]g<1>
Description The [ESC] g <1> command clears the user-store data buffer and begins recording data. The next 2000 bytes (including characters and commands) are recorded.
[ESC] g <2> Stop macro record
ASCII [ESC]g <2>
Hexadecimal 1BH 67H 02H
Decimal <27> <103> <2>
IPCL \&\%GE
EPOS $\quad[E S C] g<2>$
Description The [ESC] g <2> command stops recording user-store data information.
The buffer is not saved into the nonvolatile memory.
[ESC] g <3> Stop macro record and save
ASCII [ESC]g <3>
Hexadecimal 1 BH 67 H 03 H
Decimal <27> <103> <3>
IPCL \&\%GW
EPOS $[E S C] g<3>$
Description The [ESC] g <3> command stops recording graphic save information. The buffer is saved into the user-store nonvolatile memory under the name, "ESCg3_Save"

Note: The [ESC] g <3> command is supplied for compatibility with the Series 80PLUS and 90PLUS printers.

## Bar Codes

The Model 9000 printer supports the ability to print bar codes. The printer offers a number of formats as defined below. The host does not need to form the graphic image for these bar codes. The host need only send the printer the information to be bar coded and a graphic is generated by the printer. In some cases, a check character is required by the format. In most cases, the printer generates the check character and inserts it correctly in the format. The printer uses internal graphic modes to form bar code images, and the images are adjusted for ink bleed. In general, the bar codes generated by sending graphic data to the printer are not as readable as the bar codes the printer generates. Bar codes are printed at a $203 \times 203$ resolution.

Barcodes may be printed horizontally or vertically (using page mode).

| Function | Print bar code |  |
| :---: | :---: | :---: |
| ASCII | [ESC] b <n> \{information\} [NUL] |  |
| Hexadecimal | 1 BH 62 H <n> ... 03H |  |
| Decimal | <27> <98> <n> ... <3> |  |
| IPCL | \&\%25 ... [CR] | Interleaved 2 of 5 |
|  | \&\%39 ... [CR] | Code 39 |
|  | \&\%12 ... [CR] | Code 128 |
|  | \&\%28.<m $\mathrm{m}_{1}><\mathrm{m}_{2}>$ | Code 128 (allows a two character length, preceding the information) |
|  | \&\%UP ... [CR] | UPC A |
|  | \&\%UE ... [CR] | UPC E |
|  | \&\%EA ... [CR] | EAN-13 |
|  | \&\%E8 ... [CR] | EAN-8 |
|  | \&\%93 ... [CR] | Code 93 |
|  | \&\%CB .. [CR] | Codabar |

Description The [ESC] b <n> \{Bar Data\} [NUL] command prints information as a bar code. The bar data is terminated with an [ETX], [CR], [LF] or [NUL].

An alternate Format is provided if control characters can be part of the barcode data.
The [ESC] b <n>< $L_{L}><L_{H}>\{$ Bar Data \} command prints information as a bar code.
The $\left\langle L_{L}\right\rangle\left\langle L_{H}\right\rangle$ parameters make up a 16 bit length of bar data as follows:
Length $=\left(L_{H} * 256\right)+L_{L}$.
An alternate format is provided that allows only a single character length for some bar codes.
The [ESC] b <n><L $L_{L}>\{$ Bar Data \} command prints information as a bar code.
The $L_{L}>$ parameters make up a 8 bit length of bar data as follows:
Length $=\mathrm{L}_{\mathrm{L}}$.
If a start code is to be specified, The following format may be required.
The [ESC] b <n><S>\{ Bar Data \} [NUL] command prints information as a bar code.
$<S>$ indicates the start code and data up to the [NUL] is the bar data.


COMPOSITE Barcodes
Composite data
64 Secondary Data GS-1 Alpha Numeric (NUL term.)
Linear Barcode data
65
66
67
68
69
UPC A
Numeric (0-9) only; 11 digits
UPC E
Numeric (0-9) only; 11 digits
EAN-8,13,14 Numeric (0-9) only; 7,12, or 13 digits
EAN 128 GS-1 code 128 Alpha Numeric
RSS -14 See GS1 Databar barcode definitions below
70 RSS -14 Truncated "
71 RSS Limited "
72 RSS Expanded "
73 RSS Stacked " No HRI will be printed
74 RSS Stacked Omni " No HRI will be printed 75 RSS Expanded Stacked " No HRI will be printed

Note1: You may print barcodes in page mode. If you rotate these barcodes $90^{\circ}$ or $180^{\circ}$ you can get significantly longer barcodes.
Note2: A [CR], [LF] or [NUL] may also be used in place of the [NUL] to end the bar code data field.
Note 3: Only information that is usable in a particular bar code will be printed.

## Barcodes and Code Pages

In ASCII mode the barcode data is not translated by the active code page. In general barcode data is numeric (0-9) or alpha numeric ( $0-9$ and $A-Z$ ). Some barcodes support additional characters and are defined by the barcode specification.

## Barcodes and Unicode

In Unicode mode, the printer can accept character values from 0 to 65535. In general barcode data is generally numeric ( $0-9$ ) or alpha numeric ( $0-9$ and $A-Z$ ) and are limited to values from 0-127. Some barcodes support additional characters as defined by the barcode specification, however, only character values from 0 to 255 will be used for barcodes. Any barcode character translations must be done by the host application. Depending on the Unicode mode, values from 128 to 255 may be required to be encoded in UTF before they are sent to the printer.

Note: Any values greater than 255 will be converted into a space (0x20).
Note: In UTF8 or UTF16 modes all data is assumed to be UTF encoded.

## Linear Barcodes <br> Code-39 and Code-39 Extended

| Function | Code-39 |
| :--- | :--- |
| ASCII | $[E S C] b<1>$ \{information [NUL] |

Hexadecimal 1BH 62H <1> ... 03H
Decimal <27> <98> <1> ... <3>

[ESC] b <1> TransAct[NUL]
Note: Case conversion to upper case.

Figure 12 Code 39 Example
Code 39 is an alphanumeric bar code. It is a discrete, self-checking, variable-length code. The printer prints the complete data field. The number of characters that can be printed depends on the bar width scaling. There are two modes of operation for the Code 39 barcodes. The first is in a variable length format. In this mode all characters sent to the printer will be printed up to the termination character. Only 0-9, A-Z -, period, and space may be printed. $\$, \%,+$, and / Characters may be used as escape characters for full 128 character support. If illegal characters are passed to the printer, they are converted to legal codes. (For example, a would be converted to A).


Figure 13 Code 39 Extended Example
In full 128 character mode, the printer will encode the full 128 character set. In this mode, the first character received must be the length. IE. [ESC]b<1><L>.. where $L$ specifies the number of characters to follow and must be less than 32. The characters following the length may be from 0 to 127 . Values greater than 127 are converted to printable characters by removing the $8^{\text {th }}$ bit.

Note: In extended mode the printer will automatically convert extended characters to the character pair equivalent. The HRI will print the extended character not the character pair.

The following table specifies the Code 39 character set.

| ASCII | Code | ASCII | Code | ASCII | Code | ASCII | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NUL | \%U | SP | Space | @ | \%V |  | \%W |
| SOH | \$A | ! | /A | A | A | a | +A |
| STX | \$B | " | /B | B | B | b | +B |
| ETH | \$C | \# | /C | C | C | c | +C |
| EOT | \$D | \$ | /D | D | D | d | +D |
| ENQ | \$E | \% | /E | E | E | e | +E |
| ACK | \$F | \& | /F | F | F | f | +F |
| BEL | \$G | , | /G | G | G | g | +G |
| BS | \$H | $($ | /H | H | H | h | + H |
| HT | \$1 | ) | /I | 1 | 1 | i | + |
| LF | \$ | * | /J | J | J | j | +J |
| VT | \$K | + | /K | K | K | k | +K |
| FF | \$L | , | /L | L | L | 1 | +L |
| CR | \$M | - | - | M | M | m | +M |
| SO | \$N |  | . | N | N | n | +N |
| SI | \$O | 1 | 10 | 0 | 0 | 0 | +O |
| DLE | \$P | 0 | 0 | P | P | p | +P |
| DC1 | \$Q | 1 | 1 | Q | Q | q | +Q |
| DC2 | \$R | 2 | 2 | R | R | $r$ | +R |
| DC3 | \$S | 3 | 3 | S | S | s | +S |
| DC4 | \$T | 4 | 4 | T | T | t | +T |
| NAK | \$U | 5 | 5 | U | U | $u$ | +U |
| SYN | \$V | 6 | 6 | V | V | v | +V |
| ETB | \$W | 7 | 7 | W | W | w | +W |
| CAN | \$X | 8 | 8 | X | X | x | +X |
| EM | \$Y | 9 | 9 | Y | Y | $y$ | +Y |
| SUB | \$Z | : | /Z | Z | Z | z | +Z |
| ESC | \%A | ; | \%F | [ | \%K | \{ | \%P |
| FS | \%B | < | \%G | 1 | \%L | 1 | \%Q |
| GS | \%C | = | \%H | ] | \%M | \} | \%R |
| RS | \%D | $>$ | \% 1 | $\wedge$ | \%N | ~ | \%S |
| US | \%E | ? | \%J |  | \% O | DEL | \%T |

Figure 14 Code 39 full 128 character encoding

## Code 128 (Code-128(A,B, and C))

Code 128 is an alphanumeric bar code. It is a high-density, variable-length, continuous code, which employs multiple element widths. Code 128 has three possible start codes. The start code defines the code set, Code A, B, or C that will be used to generate the barcode. The Model 9000 allows the code set to be specified, or it can be select by the printer based on the information in the data field.

To specify code set: [ESC] b <2> <Code>\{information\} [NUL]

| Function | Code 128 Manual Encoding |
| :--- | :--- |
| ASCII | [ESC] $b<2><$ Code $>$ \{information\} [NUL] |
| Hexadecimal | $1 B H 62 H<2><$ Code $>$ \{information\} [NUL] |
| Decimal | $<27><98><2><$ Code $>$ \{information\} [NUL] |

If the first character in the data field <Code> is a start code as shown in Figure 18 below, the printer will print the complete data field from the selected set. Due to space limitations, only ten characters can be printed. The check digit is generated and printed by the printer. Characters are also specified as shown in Figure 18.

Space is defined as a $<0$ >, which makes programming difficult and causes control character conflicts for the printer. To solve this problem, the Model 9000 Printer subtracts 32 from all characters that are to be included in the bar code. In the Code 128 definition, an ' $A$ ' is <33>; however, the printer converts an ASCII ' $A$ ' (<65>) to a <33> internally. This sets Code 128C and the start codes off by 32.

Barcode 128 consists of 107 unique symbols. 101 of the symbols take on different meanings based on the start code or an embedded shift code sequence. Code stick A consists of alphanumeric characters and ASCII control codes (see the table below). Code stick B consists of Alpha numeric with lower case alpha, Code stick C consists of numeric pairs.

In most cases, the Model 9000 will generate the most compact barcode for you. However, if it is desirable to have complete control, the programmer should use manual mode.

[ESC]b<2><137><44><66><132>Parts[NUL]
Start with Code C, $<44>$ is for character pair 12, $<66>$ is for character pair 34, <132> shifts to Code B, then it's followed with the characters "Parts" and the ending
[NUL].
Figure 15 Code 128 Manual Encoding Example


| Code 128 Encoding |  |  |  | Manual Encoding |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Code Stick |  |  | Code | Decimal | Hex |
| Code A | $\begin{gathered} \text { Code } \\ \text { B } \end{gathered}$ | $\begin{gathered} \text { Code } \\ \text { C } \end{gathered}$ | 128 <br> Value | Value | Value |
| [ | [ | 59 | 59 | 91 | 5B |
| 1 | 1 | 60 | 60 | 92 | 5C |
| ] | ] | 61 | 61 | 93 | 5D |
| $\wedge$ | $\wedge$ | 62 | 62 | 94 | 5E |
| - | - | 63 | 63 | 95 | 5F |
| NUL | , | 64 | 64 | 96 | 60 |
| SOH | a | 65 | 65 | 97 | 61 |
| STX | b | 66 | 66 | 98 | 62 |
| ETH | C | 67 | 67 | 99 | 63 |
| EOT | d | 68 | 68 | 100 | 64 |
| ENQ | e | 69 | 69 | 101 | 65 |
| ACK | f | 70 | 70 | 102 | 66 |
| BEL | g | 71 | 71 | 103 | 67 |
| BS | h | 72 | 72 | 104 | 68 |
| HT | i | 73 | 73 | 105 | 69 |
| LF | j | 74 | 74 | 106 | 6A |
| VT | k | 75 | 75 | 107 | 6B |
| FF | I | 76 | 76 | 108 | 6C |
| CR | m | 77 | 77 | 109 | 6D |
| SO | n | 78 | 78 | 110 | 6E |
| SI | 0 | 79 | 79 | 111 | 6F |
| DLE | p | 80 | 80 | 112 | 70 |
| DC1 | q | 81 | 81 | 113 | 71 |
| DC2 | r | 82 | 82 | 114 | 72 |


| DC3 | S | 83 | 83 | 115 | 73 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC4 | t | 84 | 84 | 116 | 74 |
| NAK | u | 85 | 85 | 117 | 75 |
| SYN | v | 86 | 86 | 118 | 76 |
| ETB | w | 87 | 87 | 119 | 77 |
| CAN | x | 88 | 88 | 120 | 78 |
| EM | y | 89 | 89 | 121 | 79 |
| SUB | z | 90 | 90 | 122 | 7A |
| ESC | \{ | 91 | 91 | 123 | 7B |
| FS | \| | 92 | 92 | 124 | 7C |
| GS | \} | 93 | 93 | 125 | 7D |
| RS | $\sim$ | 94 | 94 | 126 | 7E |
| US | DEL | 95 | 95 | 127 | 7F |
| FNC3 | FNC3 | 96 | 96 | 128 | 80 |
| FNC2 | FNC2 | 97 | 97 | 129 | 81 |
| Shift | Shift | 98 | 98 | 130 | 82 |
| $\begin{gathered} \text { Code } \\ \text { C } \end{gathered}$ | $\begin{gathered} \text { Code } \\ \text { C } \end{gathered}$ | 99 | 99 | 131 | 83 |
| $\begin{gathered} \text { Code } \\ \text { B } \end{gathered}$ | FNC4 | $\begin{gathered} \text { Cod } \\ \text { e B } \end{gathered}$ | 100 | 132 | 84 |
| FNC4 | $\begin{gathered} \text { Code } \\ \text { A } \end{gathered}$ | $\begin{gathered} \text { Cod } \\ \text { e A } \end{gathered}$ | 101 | 133 | 85 |
| FNC1 |  |  | 102 | 134 | 86 |
| Start Code A |  |  | 103 | 135 | 87 |
| Start Code B |  |  | 104 | 136 | 88 |
| Start Code C |  |  | 105 | 137 | 89 |
| Stop |  |  | - | - |  |

Figure 16 Code 128 encoding values

## Code 128 Auto Encoding

To have the printer selected code set and automatically generate an optimal barcode, the value of Code should be the length.

```
Function Code 128 Automatic Encoding
ASCII [ESC] b <2> <Length>{information}
Hexadecimal 1BH 62H <2> <Length>{information}
Decimal <27> <98> <2> <Length>{information}
```

If the first character <Length> is from 1 to 31 , the printer will automatically select Code $\mathrm{A}, \mathrm{B}$, or C depending on the data present. If the data is all numeric, the data can be printed as pairs. This effectively doubles the amount of data that can be printed. The check digit is generated and printed by the printer. In this mode the exact data sent to the printer is encoded. There is no offset, function code, or shift code requirements.

For example the following is printed in a mixture of code $A$ and $C$ encoding:


Figure 17 Automatic Encoding Example


Note: If the first character is greater than <31> and not <135> through $<137>$, the printer will discard the first character and print the data as defined in Code A.

In automatic mode, any ASCII data from 0 to 127 could be entered. Values less than 32 will be encoded as Code stick A NUL- US, values from 96 through 127 will be encoded from Code stick B. Where ever possible numeric pairs will be encoded from Code stick C.

FNC1, FNC2, FNC3, and FNC4 may be encoded based on the table below. All other values will result in a barcode data error and the barcode will not be generated.

| 128 Code | Value in <br> Decimal | Value in <br> Hex |
| :--- | :---: | :---: |
| FNC3 | 128 | 80 |
| FNC2 | 129 | 81 |
| Not Valid | 130 | 82 |
|  | 131 | 83 |
|  | 132 | 84 |
| FNC4 | 133 | 85 |
| FNC1 | 134 | 86 |

Figure 18 Code 128 FNC encoding

## Interleaved 2 of 5 (Code 2 of 5)

| Function | Interleaved 2 of 5 |
| :--- | :--- |
| ASCII | $[E S C] b<0>\{$ information $\}$ [NUL] |
| Hexadecimal | $1 \mathrm{BH} 62 \mathrm{H}<0>\ldots 03 \mathrm{H}$ |
| Decimal | $<27><98><0>\ldots<3>$ |

Interleaved 2 of 5 is a high-density, self-checking, continuous, numeric bar code. It is mainly used where fixed-length numeric fields are required. The data field must be an even number of characters. If an odd data field is sent to the Model 9000 Printer, it will be zero padded.


Figure 19 Interleaved 2 of 5 Example

## UPC A

UPC A is a fixed-length, numeric, continuous code that employs four element widths.
The printer supports Universal Product Code Version A, E, EAN-8, and EAN-13. Version A encodes 11 digits. Typically, the UPC A format starts with a number system digit, fivedigit manufacturer's code, five-digit product code, and a check digit. The printer makes no assumptions about any of the codes except the check digit. The printer prints an UPC bar code with the 11 digits sent to it and generates the check digit. If fewer than 11 digits are sent, the remaining digits will be zeros. UPC A may include an EAN 2 or EAN 5 Addenda.

| Function | UPC A |
| :--- | :--- |
| ASCII | $[E S C] b<3>\{$ information $\}$ [NUL] |

Hexadecimal 1BH $62 \mathrm{H}<3>$ information\} [NUL]
Decimal <27> <98> <3> information\} [NUL]

[ESC] b <3> 12345678901 [NUL]

UPC A with an EAN 2 Addenda
[ESC] b <3> 12345678901+12[NUL]

UPC A with an EAN 5 Addenda

[ESC] b <3> 12345678901+12345[NUL]

Figure 20 UPC A Examples

## UPC E

UPC E is a zero suppression version of UPC. To allow the use of UPC barcodes on smaller packages where a full 12-digit barcode may not fit, a 'zero-compressed' version of UPC was called UPC-E. This barcode differs from UPC-A in that it only a 6-digit code is used, it does not use middle guard bars, and the end bit pattern is altered. UPC E requires that the first digit is zero for number system zero however; the printer does not enforce it. The printer does the compression based on the compression rules for UPC E, prints an UPC bar code based on the 11 digits sent to it, and generates the check digit. If fewer than 11 digits are sent leading zeros are added to form an 11 digit code. If the barcode does not meet the compression rules, invalid zero suppression digits are removed. UPC E may include an EAN 2 or EAN 5 Addenda.

| Last digit | UPC-E equivalent is | UPC-A equivalent is |
| :---: | :---: | :---: |
| 0 | XXNNN0 | 0XX000-00NNN + check |
| 1 | XXNNN1 | 0XX100-00NNN + check |
| 2 | XXNNN2 | 0XX200-00NNN + check |
| 3 | XXXNN3 | OXXX00-000NN + check |
| 4 | XXXXN4 | 0XXXX0-0000N + check |
| 5 | XXXXX5 | 0XXXXX-00005 + check |
| 6 | XXXXX6 | 0XXXXX-00006 + check |
| 7 | XXXXX7 | 0XXXXX-00007 + check |
| 8 | XXXXX8 | 0XXXXX-00008 + check |
| 9 | XXXXX9 | 0XXXXX-00009 + check |

Figure 21 UPC E Zero Suppression Formats

Function UPC E
ASCII [ESC] b <5> \{information\} [NUL]
Hexadecimal 1BH 62H $<5>$ information\} [NUL] Decimal <27> <98> <5> information\} [NUL]

[ESC] b <5>01210000345[NUL]

UPC E with an EAN 2 Addenda

[ESC] b $<5>01210000345+12[N U L]$

UPC E with an EAN 5 Addenda

[ESC] b <5> 01210000345+12345[NUL]

Figure 22 UPC E Examples

## EAN-13

EAN-13 is a fixed-length, numeric, continuous code that employs four element widths. The printer supports EAN-13, which is a superset of UPC that encodes 12 digits.
Typically, the format starts with a number set digit, which defines how the next six digits are encoded. The next five digits have fixed encoding. The last is a check digit. The printer prints an EAN-13 bar code with the 12 digits sent to it and generates the check digit. If fewer than 12 digits are sent, the remaining digits will be zeros. EAN 13 may include an EAN 2 or EAN 5 Addenda.

## Function EAN-13

ASCII $\quad[E S C] b<5>$ \{information [NUL]

Hexadecimal 1BH 62H < $5>$ information\} [NUL]
Decimal <27> <98> <5> information\} [NUL]

[ESC] b <3> 12345678901 [NUL]

UPC A with an EAN 2 Addenda
[ESC] b <3> 12345678901+12[NUL]

UPC A with an EAN 5 Addenda
[ESC] b <3> 12345678901+12345[NUL]

Figure 23 EAN 13 Examples

## EAN-8

EAN-8 is a fixed-length, numeric, continuous code that employs four element widths.
The printer supports EAN-8, which is a superset of UPC that encodes seven digits. The printer prints an EAN-8 bar code with the seven digits sent to it and generates the check digit. If fewer than seven digits are sent, the remaining digits will be zeros. EAN 8 may include an EAN 2 or EAN 5 Addenda.


Figure 24 EAN 8 Examples

## EAN-14

EAN-14 It is a high-density, fixed-length, numeric, continuous code, which employs multiple element widths. EAN-14, is a subset of Code 128 that encodes FNC1 and 14 digit pairs. If fewer than 14 digits are sent, leading zeros will be added to complete the code.

Function
ASCII
Decimal <27> <98> <12> information\} [NUL]

[ESC] b <12>0500123456789[NUL]

Figure 25 EAN 14 Example

ITF-14
ITF-14 is the GS1 formatted Interleaved 2 of 5 barcode. It is intended to encode a Global Trade Item Number. The ITF-14 will always encode 13 input digits and adds a $14^{\text {th }}$ check digit.

Function ITF-14
ASCII $\quad[E S C] b<13>$ \{information\} [NUL]
Hexadecimal 1BH 62H <13> information\} [NUL]
Decimal <27> <98> <13> information\} [NUL]


Figure 26 ITF-14 Example
NOTE: ITF-14 is generally printed with a surrounding box, however it is not mandatory and the Model 9000 does not add it.

EAN 2 and EAN 5 Addenda barcodes
EAN2 and EAN 5 Addenda barcodes are used to add additional information to several barcodes. The Addenda field is either 2 or 5 characters. The size of the Addenda will automatically be generated based on the size of the data supplied.
Add on data will only be accepted by barcodes that support it. To add Addenda data, append the linear barcode data with a " + " and the numeric Addenda data field. The top image below shows an EAN 2 added to a standard UPC A barcode and the bottom image is an EAN 5 added to the same UPC A barcode.


Figure 27 EAN 2 and EAN 5 Addendas

## Code 93

Code 93 is a variable-length, alphanumeric bar code. The complete data field is printed by the printer. Due to space limitations, only 10 or 11 characters can be printed.


Figure 28 Code 93 Example

## Codabar

Codabar is a variable-length format, primarily used for numeric symbols. It offers 16 data characters, including the numeric digits zero through nine, and -, \$, :, /, ., and +. Four unique start/stop characters, designated A, B, C, and D, are also available. Due to space limitations, only 12 characters can be printed. If the first character is 1 to 31 it will be used as the length. Note: If the first and last characters are not a start or stop code, Code A will be added.

| Function | Codabar |
| :---: | :---: |
| ASCII | [ESC] b <8> \{information\} [NUL] |
| Hexadecimal | 1BH 62H <8> \{information\} [NUL] |
| Decimal | <27> <98> <8> \{information\} [NUL] |
|  | [ESC] b <8> \$27.50[NUL] <br> As Start and Stop are not specified, start and stop A has been added. |
| 2780 |  |

Figure 29 Codabar Example

## DataBar (RSS) GS-1 barcodes

The Reduced Space Symbology (RSS) barcodes are intended to encode 14 digit fields and is intended to replace UPC barcodes in the Retail industry. In February 2007 the GS1 organization took over control of the RSS barcodes and renamed them DataBar. RSS barcodes use 6 variable bar and space widths to encode the value. Because of the width encoding, a single scaling factor is used to adjust the barcode. The wide and narrow bar settings are not used. Non-stacked barcodes will use the height setting, however, stacked versions have specific height to width ratio requirements and will adjust the ratios to fit in the selected height. The scale factor will also be used but will only affect the width.

All RSS barcodes are encoded with awareness of the GS-1 General specification for AI and Al field requirements. In some cases not all possible character sequences are allowed in an AI field and many are fixed length. In some cases AI fields contain check digits and during the encoding process they are removed. When specifying AI fields with check digits the check digit must be passed to the Model 9000 printer. In some cases it is used and in others it is removed and replaced by the reader. The Model 9000 will make some attempt to verify the format, however only critical data that would prevent encoding the data is actually checked by the printer. It's up to the application programmer to format the data in accordance with the GS-1 specification.

RSS barcodes may get excessively large. The printer will attempt to generate a barcode that is the requested size but will automatically shrink the barcode scale if it will not fit in the print zone. This may result in elements that are too small to print reliably. If that happens the printer will not fault but will slow the print process and print the barcode anyway. In general barcodes with a single dot wide element are unreadable.

There are several versions or formats of RSS bar codes and each has specific options and requirements.

## GS1-Databar-14 (GS1-Databar-Omni-directional)

RSS-14 (GS-1 DataBar Omni-directional) encodes the full 14 digit EAN.UCC ${ }^{22}$ item identification in a symbol that can be omni-directionally read. For example:


Figure 30 RSS-14 symbol representing (01)20012345678909
Where the leading (01) is the implied application identifier and is not encoded in the symbol. The last digit, 9 , is not directly encoded in the symbol, but is a calculated mod 10 check digit. The (01) and the last digit are not sent as part of the command so the data field would therefore be "2001234567890"

Function GS1-Databar 14
ASCII $\quad[E S C] b<18>$ \{information\} [NUL]
Hexadecimal 1BH 62H <18> \{information\} [NUL]
Decimal <27> <98> < 18> \{information\} [NUL]

[ESC] b <18> 1234567890123 [NUL]

Figure 31 GS1-Databar 14 Example


Note: Note that the data to be encoded does not include the GS1 format [01] as it is implied. You only need to send the 13 digit item number. The check digit will be generated by the printer.

RSS-14 is capable of encoding $2 \times 10^{13}$ values. These values are expressed as 14 digits. The first digit is a linkage flag, followed by 13 data digits. The 13 data characters plus the check digit form the 14 digit identification number including the leading indicator digit. Values $10,000,000,000,000$ and above indicate that the linkage flag is set and therefore a 2D component is present. That is $10,001,234,567,890$ encodes as 00012345678905 with a linkage flag of 1.

[^13]
## GS1-Databar-Truncated

GS1-Databar truncated is a more compact version of the GS1-Databar and will encode the full 14 digit EAN.UCC item identification but using less vertical height. The specification defines the truncated version to be 13 times the X dimension, however, the height of the barcodes can be set by the configuration commands. The GS1-Databar truncated version printed by the Model 9000 is simply $1 / 2$ the height of the standard GS-1 DataBar symbol.

Function GS1-Databar 14 Truncated
ASCII $\quad[E S C]$ b $<19>$ \{information\} [NUL]
Hexadecimal 1BH 62H <19> \{information\} [NUL]
Decimal <27> <98> < 19> \{information\} [NUL]

$$
\text { [ESC] b <19> } 1234567890123 \text { [NUL] }
$$

Figure 32 GS1-Databar 14 Truncated Example

Note: Note that the data to be encoded does not include the GS1 format [01] as it is implied. You only need to send the 13 digit item number. The check digit will be generated by the printer.

GS1-Databar-14 Stacked and GS1-Databar-14 Stacked-Omni
GS1-Databar-14 Stacked and GS1-Databar-14 Stacked Omni-directional are RSS-14 barcodes printed in a stacked format. The ratios between the top and bottom of this symbol are fixed and are not adjustable. There is also a separator between the barcodes that has a specific relationship to the top and bottom bars. This barcode must be printed within a controlled aspect ratio. GS1-Databar Stacked symbols are typically printed without HRI. To allow HRI to be printed if required the Stacked HRI may be enabled with a special configuration command.

Function GS1-Databar 14 Stacked
ASCII [ESC] b <21> \{information\} [NUL]
Hexadecimal 1BH 62H <21> \{information\} [NUL]
Decimal <27> <98> <21> \{information\} [NUL]

[ESC] b <21> 1234567890123 [NUL]

Figure 33 GS1-Databar 14 Stacked Example

GS1-Databar-14 Stacked Omni-directional is specified to be printer with a greater height than the GS1-Databar-14 Stacked by a factor of 3. As the height of the symbol may be specified by command, the GS1-Databar-14 Stacked Omni-directional symbol will be printed 3 times the GS1-Databar-14 Stacked symbol.

Function GS1-Databar 14 Stacked-Omni
ASCII [ESC] b <22> \{information\} [NUL]
Hexadecimal 1BH 62H <22> \{information\} [NUL]
Decimal <27> <98> <22> \{information\} [NUL]

[ESC] b <22> 1234567890123 [NUL]

Figure 34 GS1-Databar 14 Stacked Omni Example
Note: Note that the data to be encoded does not include the GS1 format [01] as it is implied. You only need to send the 13 digit item number. The check digit will be generated by the printer.

## GS1-Databar-Limited

RSS Limited (GS-1 DataBar Limited) encodes a 14 digit EAN.UCC item identification with an indicator digit of 0 or 1 in a small symbol that is not intended to be scanned. As the indicator can only be 0 or 1 , the barcode must start with 0 or 1 or it is invalid.


Figure 35 GS1-Databar Limited Example

Note: Note that the data to be encoded does not include the GS1 format [01] as it is implied. You only need to send the 13 digit item number. The check digit will be generated by the printer.

## GS1-Databar-Expanded

RSS Expanded (GS-1 DataBar Expanded) encodes the EAN.UCC item identification plus supplementary element strings such as weight and date in a symbol that can be omni-directionally scanned.


## Figure 36 GS1-Databar Expanded Example

Note: The data for expanded RSS barcodes must be formatted using Al fields as defined by the GS-1 specification and comply with the EAN.UCC format. The GS-1 ISO/IEC 24724 standard specifies these formats.
Note: It is possible to define an RSS Expanded barcode that will not fit in the print zone of the Model 9000 printer. If this occurs, the printer will attempt to scale the barcode to fit. If the scaling fails, the barcode may be unreadable.

## GS1-Databar-Expanded Stacked

RSS Expanded Stacked (GS-1 DataBar Expanded Stacked) encodes the EAN.UCC item identification plus supplementary element strings such as weight and date in a stacked symbol that can be omni-directionally scanned. The ratios between the top and bottom of this symbol are fixed and are not adjustable. There is also a separator between the barcodes that has a specific relationship to the top and bottom bars. This barcode must be printed within a controlled aspect ratio. GS1-Databar Stacked symbols are typically printed without HRI. To allow HRI to be printed if required the Stacked HRI may be enabled with a special configuration command.

Function GS1-Databar Expanded Stacked
ASCII [ESC] b <24> \{information\} [NUL]
Hexadecimal 1BH 62H <24> \{information\} [NUL]
Decimal <27> <98> <24> \{information\} [NUL]
[ESC] b <24>

Figure 37 GS1-Databar Expanded Stacked Example

## EAN-128 (GS1-128)

The GS1-128 Bar Code has been designed through joint co-operation between GS1 and Automatic Identification Manufacturers, Inc. (AIM). The GS1-128 barcode is a subset of the more general Code 128 barcode. By agreement between AIM, Inc. and GS1, use of the Function 1 Symbol Character (FNC1) in Code 128 Symbols in the first symbol character position following the Start Character has been reserved exclusively for the GS1 System.

The Model 9000 printer provides a GS-1 coded input to the barcode and encodes all the EAN-128 requirements into the data.

## Function GS1-128

ASCII [ESC] b $<11>$ \{information\} [NUL]
Hexadecimal 1BH 62H <11>\{information\} [NUL]
Decimal <27> <98> <11>\{information\} [NUL]

[ESC] b <11>
[01]12345678901234[11]100909[30]123456[NUL]

Figure 38 GS1-128 Example

Note: The data for GS1-128 barcodes must be formatted using Al fields as defined by the GS-1 specification and comply with the EAN.UCC format. The GS-1 ISO/IEC 24724 standard specifies these formats.

## 2D Barcodes

The Model 9000 supports a number of 2D and Stacked barcodes. The terms stacked barcode or multi-row barcode code are more accurately applied to those barcodes made up of a series of one-dimensional barcodes. The term Matrix code generally applies to 2-D codes that code the data based on the position of black spots within a matrix. Each black element is the same dimension and it is the position of the element that encodes the data.

Note: When printing 2D barcodes HRI (Human Readable Information) is generally not used. The Model 9000 Supports HRI when printing 2D barcodes but makes no attempt to align the text with the barcode.
Note: Space between the barcode and any HRI if active is controlled by the printer. If HRI is not active, the same white spacing is used. It is up to the user to enforce a quite zone between the barcode and any user data.

## Code 49

Code 49 barcode is a stacked barcode containing between 2 and 8 rows, each separated by a separator bar. Each row contains 16 "words" or character pairs with a start and stop character. The last row also contains the number of rows in the barcode. There are 2400 possible words which can be generated from each pair of characters. Symbols with less than 7 rows contain 2 check digits in the final row. Symbols with 7 or 8 rows contain 3 check digits in the final row.

Function Code 49
ASCII [ESC] b <14> \{information\} [NUL]
Hexadecimal 1BH 62H <14> \{information\} [NUL]
Decimal <27> <98> <14> \{information\} [NUL]
[ESC] b <14>12345678901234[NUL]

## Figure 39 Code 49 Example



Note: There is no user control of the number of rows or columns.
Note: The scale may be set from 2 to 6
Note: GS-1 encoding may be activated for both Code16. There is an FNC1 indicator in the barcode that indicated that GS1 is active. If GS-1 formatting is used it's up to the user to recognize that GS1 is active and decode the barcode as GS1 data.

## Code 16K

The Code 16K bar code is a multiple-row bar code that can encode the full ASCII character set below ASCII 128. It uses existing UPC and Code 128 character set patterns. Up to 77 full ASCII characters or 154 numeric characters can be encoded. These characters are encoded into 2 to 16 rows. Each row is divided by a separator bar. The top and bottom of the symbol also have separator bars that extend to the ends of the minimum quiet zones.

Like Code128 there are various ways to encode the data into the bar pattern. The encoder for Code16K automatically selects the proper encoding method to produce the most compact barcode. If the bar code has four or more consecutive numbers, the numbers are encoded in number pairing mode. This means that two numbers are encoded into one character width, making the size of the bar code smaller. The Code 16 K bar code has three forms of error detection. Parity is checked for each character, start and stop characters are used to identify each row, and two checksum characters are always appended to the end of the bar code


## Figure 40 Code 16K Example

Note: There is no user control of the number of rows or columns.
Note: The scale may be set from 2 to 6
Note: GS-1 encoding may be activated for both Code16. There is an FNC1 indicator in the barcode that indicated that GS1 is active. If GS-1 formatting is used it's up to the user to recognize that GS1 is active and decode the barcode as GS1 data.

## PDF 417, Truncated PDF417 and Micro PDF 417

PDF 417, Truncated PDF417 and Micro PDF 417 are a two dimensional barcode that will encode the full ASCII character set. As it encodes the full set including control characters, the length of the following data must be provided to the printer.

## PDF 417

Large amounts of text and data can be encoded when using the PDF417 barcodes. The printed symbol consists of several linear rows of stacked code words. Each codeword represents 1 of 929 possible values from one of three different clusters. A different cluster is chosen for each row, repeating after every three rows. Because the code words in each cluster are unique, the scanner is able to determine what line each cluster is from.

PDF417 uses Reed Solomon error correction instead of check digits. This error correction allows the symbol to endure some damage without causing loss of data. AIM standards recommend a minimum error correction level of 2.

The X dimension is the width of the narrowest bar in a printed codeword. The Y dimension is the height of each row within the PDF417 symbol. The PDF417 barcode is usually printed at an X to Y ratio of 1:2 to 1:5. The Model 9000 printer defaults to a 1:ratio. By lowering the ratio, a significant amount of space can be saved; however, some scanners cannot read X to Y ratios of less than 1:3.

The form of the command is as follows:

| Function | PDF 417 |
| :--- | :--- |
| ASCII | [ESC] $b<9><n L><n H><d_{1}>\ldots<d_{n}>$ |
| Hexadecimal | 1BH 62H $<9><n L><n H><d_{1}>\ldots<d_{n}>$ |
| Decimal | $<27><98><9><n L><n H><d_{1}>\ldots<d_{n}>$ |

Where the data length is $(\mathrm{nH} * 256)+\mathrm{nL}$. The length is limited to be from 1 to 2048 characters.

Alternate Command
Function PDF 417
ASCII [ESC] b <10> \{information\}[NUL]
Hexadecimal 1BH 62H <10> \{information\}[NUL]
Decimal <27> <98> <10> \{information\}[NUL]

TransAct Technologies Inc

Figure 41 PDF 417 Example

## Truncated PDF 417

Truncated PDF417 is two-dimensional (2D), multi-row barcode, derived from PDF417. A truncated PDF417 symbol uses less area than the normal PDF417 barcode as the right hand side of the symbol is removed or truncated. This option should be used where damage to the barcode is unlikely as it is not as easily read ad normal PDF417.

The form of the command is as follows:

| Function | Truncated PDF 417 |
| :--- | :--- |
| ASCII | [ESC] $b<38><n L><n H><d_{1}>\ldots<d_{n}>$ |
| Hexadecimal | $1 B H 62 H<38><n L><n H><d_{1}>\ldots<d_{n}>$ |
| Decimal | $<27><98><38><n L><n H><d_{1}>\ldots<d_{n}>$ |

Where the data length is $\left(\mathrm{nH}^{*} 256\right)+\mathrm{nL}$. The length is limited to be from 1 to 150 characters.

Alternate Command

| Function | Truncated PDF 417 |
| :--- | :--- |
| ASCII | [ESC] b $<39>$ \{information\}[NUL] |
| Hexadecimal | 1BH $62 \mathrm{H}<39>$ \{information\}[NUL] |
| Decimal | $<27><98><39>$ \{information\}[NUL] |

## Figure 42 Truncated PDF 417 Example

Note: Micro PDF 417 shares a control table with PDF417 however the right side is removed.
Note: The PDF417 specification does not reference GS-1 formatting; however GS-1 encoding may be activated for both Standard and Truncated PDF417. There is no indicator in the barcode that indicates that GS1 is active. If GS-1 formatting is used it's up to the user to recognize that GS1 is active and decode the barcode as GS1 data.
Note: The printer has a limited print zone and the amount of data that may be contained in a PDF417 barcode is large. The height of the PDF 417 barcode may be limited by the internal size of the row buffer rather than the PDF417 generator.

## Micro PDF 417

MicroPDF417 is two-dimensional (2D), multi-row barcode, derived from PDF417. Micro PFD417 can encode up to 150 bytes. Micro-PDF417 is designed for applications requiring improved area efficiency

The form of the command is as follows:
Function Micro PDF 417

ASCII $\quad[E S C] b<33><n L><n H><d_{1}>\ldots<d_{n}>$
Hexadecimal 1BH 62H <33><nL><nH><d ${ }_{1}>\ldots<d_{n}>$
Decimal <27> <98> <33><nL><nH><d $d_{1} \ldots<d_{n}>$
Where the data length is $\left(\mathrm{nH}^{*} 256\right)+\mathrm{nL}$. The length is limited to be from 1 to 150 characters.

Alternate Command

| Function | Micro PDF 417 |
| :--- | :--- |
| ASCII | [ESC] b $<34>$ \{information\}[NUL] |
| Hexadecimal | $1 B H 62 H<34>$ \{information\}[NUL] |
| Decimal | $<27><98><34>$ \{information\}[NUL] |


[ESC]b<32>TransAct Technologies Inc.[NUL]

## Figure 43 Micro PDF 417 Example

Note: Micro PDF 417 shares a control table with PDF417. PDF417 allows the columns to be set from 1 to 30, however Micro PDF417 only allows 1 4. (0 will auto set the columns) If the columns are set out of range, it will be limited to 4.
Note: The encryption level cannot be changed for Micro PDF 417. Note: MicroPDF417 is used for composite barcodes which use GS1 formatting. When used for composite barcodes GS1 encoding is active. Note: The PDF417 and Micro PDF 417 specifications do not reference GS-1 formatting; however GS-1 encoding may be activated for MicroPDF417. There is no indicator in the barcode that indicates that GS1 is active. If GS-1 formatting is used it's up to the user to recognize that GS1 is active and decode the barcode as GS1 data.

## Data Matrix Bar Code

This is a 2-D matrix symbology barcode that can encode numeric or alphanumeric data and includes error correction. There are 4 original error correction ECC-000 - ECC-140 as well as the standard Reed-Solomon ECC-200 error correction. Most current scanners only support ECC-200. In theory 3116 numeric and 2335 characters can be encoded in Data Matrix. From a practical point of view the limited print width of the Model 9000 limits the maximum size of the barcode.

The Data Matrix barcode matrix may be square or rectangular and only specific sizes are allowed. You may select a size and you may limit the selection to square only, however, if you limit the size, you must leave enough room for the data or the printer will automatically select a larger matrix. The commands to control 2 dimensional barcode options start on page 186.

## Data Matrix Encoding

As referred to above, there are 2 basic encoding schemes defined for Data Matrix barcodes; ECC 000 - 140 and ECC 200. ECC 200 which uses Reed-Solomon error correction and is recommended for all new applications. ECC 000-140 is the older system and only supported by a few older scanners. As ECC200 is the recommended encoding, it is the only version supported by the Model 9000.

## Data Matrix ECC200

ECC200 is actually 6 encoding schemes. The data to be encoded is scanned and the optimal encoding scheme or combination of schemes is used to encode the symbol. The resulting encoded data is then processed with the Reed-Solomon error correction algorithm and the resulting information is formatted into a Data Matrix barcode.

Note: The ISO/IEC 16022:2006 specification defines how the ECC200 encoding schemes are to be evoked, however in some cases the resulting size of the compressed data is identical with 2 or more different encoding sequences. The ISO standard is followed by the Model 9000 however it is possible that other generators will generate different barcode patterns that are equivalent.

| Encoding scheme | Characters | Bits per data character |
| :---: | :---: | :---: |
| ASCII | double digit numerics | 4 |
|  | ASCII values 0-127 | 8 |
|  | Extended ASCII values 128 - 255 | 16 |
| C40 | Upper-case alphanumeric | 5,33 |
|  | Lower case and special characters | 10,66* |
| Text | Lower-case alphanumeric | 5,33 |
|  | Upper case and special characters | 10,66** |
| X12 | ANSI X12 EDI data set | 5,33 |
| EDIFACT | ASCII values 32-94 | 6 |
| Base 256 | All byte values 0-255 | 8 |
| encoded as two C40 values as result of use of a shift character |  |  |
| ** encoded as two Text values as result of use of a shift character |  |  |

Table 19 Encoding schemes for ECC 200

Data Matrix barcodes are fixed sizes and depending on how the data compresses, two different strings with the same character count may print different size barcodes. It is possible to select a minimum barcode size and unused data locations will be filled with pad data.

## Data Matrix Commands

There are two version of the command, one is null terminated and the other allows a length to be specified (Note that the length is a two byte field as the symbol may contain more than 256 characters.

| Function | Data Matrix |
| :--- | :--- |
| ASCII | [ESC] $b<28>\{$ information $[\mathrm{NUL}]$ |
| Hexadecimal | $1 \mathrm{BH} 62 \mathrm{H}<28>$ \{information\} [NUL] |
| Decimal | $<27><98><28>$ \{information\} [NUL] |

Function Data Matrix

ASCII [ESC] b <27><nL><nH><d $>\ldots<d_{n}>$ Hexadecimal 1BH 62H <27><nL><nH><d ${ }_{1}>\ldots<d_{n}>$ Decimal <27> <98> <27><nL><nH><d $d_{1}$... <d $d_{n}>$

Note: The normal Select barcode Width and Select Barcode height commands do not affect Data matrix barcodes. The rules governing how the barcode is printed do not allow variations in the aspect ratios. There are Data Matrix control commands that will allow some control over how the barcode is printed.

[ESC] b <28>TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York[NUL]

## Figure 44 Data Matrix Example

## Testing Data Matrix barcodes

There is a special reference symbol that is useful for control testing. It is a $16 \times 16$ ECC 200 symbol and can be printed which encodes the data "30Q324343430794<OQQ". As shown in the figure below. This reference symbol has a region of parallel bars and spaces which can be linearly scanned and then evaluated for print growth using the edge-measurement methodologies of ISO/IEC 15416.


Figure 45 ECC 200 reference symbol encoding "30Q324343430794<OQQ"
Refer to the ISO/IEC 16022:2006 standard for more information.

## Maxicode

Maxicode is 2D barcode originally created and used by United Parcel Service. Suitable for tracking and managing the shipment of packages, it resembles a barcode, but uses dots arranged in a hexagonal grid instead of bars. Maxicode has been standardized under "ISO/IEC 16023" or "AIM BC10 ISS - Maxicode"

A Maxicode is sometimes referred to as a "Bird's Eye", "Target", or "ups code". It generally appears as a 1 inch square ${ }^{23}$, with a bull's-eye in the middle, surrounded by a pattern of hexagonal dots. It can store about 93 characters of information, and up to 8 Maxicode symbols can be chained together to convey more data. The centered symmetrical bull's-eye is useful in automatic symbol location regardless of orientation, and it allows Maxicode symbols to be scanned even on a package traveling rapidly.

Maxicode symbols optionally include a structured carrier message containing key information about a package. This information is protected with a strong Reed-Solomon error correction code, allowing it to be read even if a portion of the symbol is damaged. These fields include:

- A 4-bit indication of the mode in use, currently either mode 2 or mode 3.
- A national or international postal code. MaxiCode supports both numeric postal codes (e.g. a ZIP Code), and alphanumeric postal codes. (148501200 Transact)
- A 3-digit country code encoded per ISO 3166 (231 for the US)
- A 3-digit class of service code assigned by the carrier (3 ground)
- Mode 0 - Obsolete mode superseded by modes 2 and 3. However, the Model 9000 will use a mode setting of zero to indicate the mode should automatically be determined from the data supplied. In Auto Mode Modes 2,3 or 4 are used.
- Mode 1 - is obsolete and not supported by the Model 9000
- Mode 2 - Formatted data containing a structured carrier message with a 10 digit numeric postal code and 3 digit country and service code. (US domestic)
- Mode 3 - Formatted data containing a structured Carrier Message with a 6 character alphanumeric postal code and 3 digit country and service code. (international destinations)
- Mode 4 - Unformatted data with Standard Error Correction.
- Mode 5 - Unformatted data with Enhanced Error Correction.
- Mode 6 - Used for programming hardware devices.


Figure 46 Maxicode Symbol

[^14]The above Mode 2 symbol is encoding the TransAct Address as follows: 148501200231003 TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York. Where 14850-1200 is the zip code, 231 is the country code and 003 is ground service.

## Maxicode Commands

There are two version of the command, one is NUL terminated and the other allows a length to be specified (Note that the length is a two byte field as the symbol may contain more than 256 characters.)

| Function | Maxicode |
| :--- | :--- |
| ASCII | $[E S C] b<16>\{$ information $[\mathrm{NUL}]$ |
| Hexadecimal | $1 \mathrm{BH} 62 \mathrm{H}<16>$ \{information\} [NUL] |
| Decimal | $<27><98><16>$ \{information\} [NUL] |

Function Maxicode
ASCII [ESC] b <15><nL><nH><d $>\ldots<d_{n}>$
Hexadecimal 1BH $62 \mathrm{H}<15><n L><n H><d_{1}>\ldots<d_{n}>$
Decimal <27> <98> <15><nL><nH><d ${ }_{1}>\ldots<d_{n}>$

[ESC] b <16>[GS]148501200[GS]231[GS]3[GS]TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York[NUL]

Figure 47 Data Maxicode Example
Note: The normal Select barcode Width and Select Barcode height commands do not affect Maxicode barcodes. The rules governing how the barcode is printed do not allow variations in the aspect ratios. There are Maxicode control commands that will allow some control over how the barcode is printed.
Note: GS1 encoding is not supported by Maxicode.

## MaxiCode Mode 2 and 3 Structured Carrier Message

MaxiCode Mode 2 and Mode 3 are generally use as a destination sorting symbol. In these modes, the primary message is always data specific and encodes postal code, country code and service class. The three primary data elements should be supplied in the above order separated by GS (Group Separator - ASCII 29) immediately followed by the secondary message contents.

There are two commonly used message formats when using Mode 2 and Mode 3:

## Messages Beginning with "[)>RS01GSyy"

Messages which begin with the seven encoded data characters"[]>RS01GSyy" conform to particular open system standards and has the following structure:

- [)>RS (Message Header)
- 01GS (Format Header)
- 2-digit representing the year (yy) of a date
- Postal/Zip Code:
- If Mode 2: 5-digit zip code + 4-digit zip code extension
- If Mode 3: 6-alphanumeric characters zip code (A through Z or 0 to 9)
- GS
- 3-digit country code
- GS
- 3-digit class of service
- GS

NOTE: The following format is not verified by the Model 9000

- <tracking number> (Mandatory Data for UPS)
- GS<SCAC> (Mandatory Data for UPS)
- GS<UPS shipper number>
- GS<Julian day of pickup>
- GS<shipment ID number>
- GS<n/x> (Package $n / x$ )
- GS<package weight>
- GS<address validation>
- GS<ship to street address>
- GS<ship to city>
- GS<ship to state>
- RS
- EOT (End of Message)

Where GS (ASCII 29) is used to separate fields in a message; RS (ASCII 30) is used to separate format types and EOT (ASCII 4) is the end of transmission characters.

Note: The Model 9000 only enforces the format through the GS after the class of service field. The remainder of the message is not validated and is simply encoded by the printer.

## Messages NOT Beginning with "[)>RS01GS"

- Postal/Zip Code:
- If Mode 2 (NUMERIC ONLY): 5-digit zip code + 4-digit zip code extension (if none exists, four zeros 0000 must be specified)
- If Mode 3 (ALPHANUMERIC): 6-alphanumeric characters zip code (A through Z or 0 to 9 )
- GS
- 3-digit country code (from ISO 3166) - NOTE: Mode 2 supports the US Country Code (840). For other country codes please use Mode 3 instead.
- GS
- 3-digit class of service
- GS
- <The secondary message data in the required format>
- EOT (End of Message)

Where GS (ASCII 29) is used to separate fields in a message and EOT (ASCII 4) is the end of transmission character.

## QRCode

QR Code is a 2D barcode readable by QR scanners, mobile phones and smart phones with a camera. The code consists of black modules arranged in a square pattern on white background. The information encoded can be most any text data.

Although initially used for tracking parts in vehicle manufacturing, QR Codes are now used in a much broader context, including both commercial tracking applications and convenience-oriented applications aimed at mobile phone users (known as mobile tagging). Denso Wave, Inc. invented the QR Code Barcode. The word " QR Code" is a registered trademark of DENSO WAVE INCORPORATED. This registered trademark applies only for the word "QR Code", and not for the QR Code pattern or image.

QR Codes storing addresses and URLs may appear in magazines, on signs, buses, business cards, retail receipts, or on just about any object about which users might need information. Users with a camera phone equipped with the correct reader application can scan the image of the QR Code to display text, contact information, connect to a wireless network, or open a web page in the phone's browser. This act of linking from physical world objects is known as a hard link or physical world hyperlinks.

## QR Code data Capacity

| Numeric only | Max. 7,089 characters |
| :---: | :--- |
| Alphanumeric | Max. 4,296 characters |
| Binary (8 bits) | Max. 2,953 bytes |
| Kanji/Kana | Max. 1,817 characters |

NOTE: At this time Kanji and Katakana are not supported by the Model 9000 QR codes use the Reed-Solomon error correction and the error correction capacity may be adjusted.

## Error correction

| Level L | $7 \%$ of code words can be restored. |
| :---: | :--- |
| Level M | $15 \%$ of code words can be restored. |
| Level Q | $25 \%$ of code words can be restored. |
| Level H | $30 \%$ of code words can be restored. |

If numeric data is used, the barcode generator will optimize the barcode generation for numeric data. In Alpha numeric mode the printer will encode 0-9, A-Z, space, \%, *, +, -, .,/ and ..


Figure 48 QRCode Symbol
Encoding: TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York


Figure 49 QRCode Symbol for a URL

## Encoding: www.transact-tech.com

## QRCode Commands

There are two version of the command, one is null terminated and the other allows a length to be specified (Note that the length is a two byte field as the symbol may contain more than 256 characters.

| Function | QRCode |
| :--- | :--- |
| ASCII | [ESC] b $<26>\{$ information\} [NUL] |
| Hexadecimal | $1 \mathrm{BH} 62 \mathrm{H}<26>$ \{information\} [NUL] |
| Decimal | $<27><98><26>$ \{information\} [NUL] |

Function QRCode

ASCII [ESC] b <25><nL><nH><d ${ }_{1}>\ldots<d_{n}>$
Hexadecimal 1BH 62H <25><nL><nH><d $>\ldots<d_{n}>$
Decimal <27> <98> <25><nL><nH><d $d_{1} \ldots<d_{n}>$

[ESC] b <26>TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York[NUL]

Figure 50 Data QRCode Example
Note: The normal Select barcode Width and Select Barcode height commands do not affect QRCode barcodes. The rules governing how the barcode is printed do not allow variations in the aspect ratios. There are QRCode control commands that will allow some control over how the barcode is printed.
Note: QR Code Model 1 is obsolete, only Model 2 is supported.

## Micro QRCode

Micro QR Code is a 2D barcode readable by most QR scanners, mobile phones and smart phones with a camera. The code is similar to QR code although is restricted to 35 characters

| Numeric only | Max. 35 characters |
| :---: | :--- |
| Alphanumeric | Max. 21 characters |
| Binary (8 bits) | Max. 15 bytes |
| Kanji/Kana | Max. 9 characters |

Note: The number of characters is also affected by the error correction. The above assumes the default level $L$ is used
Note: Lower case alpha is processed as binary data. URL information works best in upper case.
Note: At this time Kanji and Katakana are not supported by the Model 9000
Micro QRCode is controlled by the same commands as QR code. Error correction level H is not available as the number of correction characters would exceed the input length.

## Micro QRCode Commands

There are two version of the command, one is null terminated and the other allows a length to be specified (Note that the length is a two byte field as the symbol may contain more than 256 characters.

| Function | Micro QRCode |
| :--- | :--- |
| ASCII | [ESC] b $<37>$ \{information\} [NUL] |
| Hexadecimal | BH 62H <37> \{information\} [NUL] |
| Decimal | $<27><98><37>$ \{information\} [NUL] |


| Function | Micro QRCode |
| :--- | :--- |
| ASCII | [ESC] $b<36><n L><n H><d_{1}>\ldots<d_{n}>$ |

Hexadecimal 1BH $62 \mathrm{H}<36><n L><n H><d_{1}>\ldots<d_{n}>$
Decimal <27> <98> <36><nL><nH><d ${ }_{1}>\ldots<d_{n}>$

[ESC] b <36>WWW.TRANSACT-TECH.COM[NUL]

Figure 51 Data Micro QRCode Example


Note: The normal Select barcode Width and Select Barcode height commands do not affect Micro QRCode barcodes. The rules governing how the barcode is printed do not allow variations in the aspect ratios. The QRCode control commands that will allow some control over how the barcode is printed.

## Aztec

The symbol is built on a square grid with a bulls-eye pattern at its centre for locating the code. Data is encoded in concentric square rings around the bulls-eye pattern. The central bulls-eye is $9 \times 9$ or $13 \times 13$ pixels, and one row of pixels around that encodes basic coding parameters, producing a "core" of $11 \times 11$ or $15 \times 15$ squares. Data is added in "layers", each one containing 2 rings of pixels, giving total sizes of $15 \times 15,19 \times 19$, $23 \times 23$, and so on.

The corners of the core include orientation marks, allowing the code to be read if rotated or reflected. Decoding begins at the corner with three black pixels, and proceeds clockwise to the corners with two, one and zero black pixels. The variable pixels in the central core encode the size, so it is not necessary to mark the boundary of the code with a blank "quiet zone", although some bar code readers require one.

The compact Aztec code core supports symbols from $15 \times 15$ (room for 13 digits or 12 letters) through $27 \times 27$. There is additionally a special $11 \times 11$ "rune" that encodes one byte of information. The full core supports sizes up to $151 \times 151$, which can encode 3832 digits, 3067 letters, or 1914 bytes of data.

The level of Reed-Solomon error correction is used for Aztec and the Model 9000 is configurable, to $10 \%, 23 \%, 36 \%$ or $50 \%$ of the data region. The recommended level is 23\%.

Aztec Code Standard is ISO/IEC 24778 (published February 2008)
All 8 -bit values can be encoded. The default interpretation for values $1^{24}-127$ is ASCII and for values 128-255, ISO 8859-1


Figure 52 Aztec Symbol
Encoding: TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York

[^15]
## Aztec Commands

There are two version of the command, one is null terminated and the other allows a length to be specified (Note that the length is a two byte field as the symbol may contain more than 256 characters.
Function Aztec

ASCII [ESC] b $<30>\{$ information\} [NUL]
Hexadecimal 1BH 62H $<30>$ \{information\} [NUL]
Decimal <27> <98> <30>\{information\} [NUL]

| Function | Aztec |
| :--- | :--- |
| ASCII | $[E S C] b<29><n L><n H><d_{1}>\ldots<d_{n}>$ |
| Hexadecimal | $1 B H 62 H<29><n L><n H><d_{1}>\ldots<d_{n}>$ |
| Decimal | $<27><98><29><n L><n H><d_{1}>\ldots<d_{n}>$ |


[ESC] b <30>TransAct Technologies Inc. 20 Bomax Drive, Ithaca New York[NUL]

Figure 53 Data Aztec Example

Note: The normal Select barcode Width and Select Barcode height commands do not affect Aztec barcodes. The rules governing how the barcode is printed do not allow variations in the aspect ratios. There are Aztec control commands that will allow some control over how the barcode is printed.

| Function | Aztec Rune |
| :--- | :--- |
| ASCII | [ESC] b $<31>$ \{information\} [NUL] |
| Hexadecimal | 1BH 62H $<31>$ \{information\} [NUL] |
| Decimal | $<27><98><31>$ \{information\} [NUL] |

Aztec Rune will encode one 8 bit byte represented by 3 numeric characters representing 0-255.
[ESC] b <31>25[NUL]
Figure 54 Aztec Rune Example

Note: Many barcode scanners do not support Aztec Rune barcodes.
Note: The intent is that this barcode encodes one 8 bit value

## Code One

Code One was invented in 1992 and is the earliest public domain matrix barcode. It uses a finder pattern of horizontal and vertical bars crossing the middle of the symbol. The symbol can encode ASCII data, error correction data, function characters, and binary encoded data.

Code One is currently used in the health care industry for medicine labels and the recycling industry to encode container content for sorting.

| Function | Code One |
| :--- | :--- |
| ASCII | [ESC] b $<32>$ \{information\} [NUL] |
| Hexadecimal | 1BH 62H < $32>$ \{information\} [NUL] |
| Decimal | $<27><98><32>$ \{information\} [NUL] |


[ESC] b <32>12345678901234[NUL]

## Figure 55 Code One Example

Note: Setting the Size of the Code One barcode will set the minimum matrix size. If the encoded data requires a larger matrix, the matrix size will be increased as required. (The default is 0 which will auto size the symbol)

## Composite Barcodes

GS1 Composite barcode consists of a linear component, that encodes the item's primary data and an adjacent 2D composite component that encodes supplementary data.

The linear component will be EAN GS1-128, EAN-8, EAN-13, UPC-A, UPC-E or any barcode in the Databar group.

The supplementary, 2D composite component will be one of the following: Composite Code A barcode, which is derived from the MicroPDF417 specification, for EAN-8, EAN-13, UPC-A, UPC-E, GS1 DataBar barcodes, or Composite Code C barcode, which is derived from the PDF417 standard GS1128 (EAN-128) barcodes.

MicroPDF417 barcodes are assigned a specific matrix of row/column combinations. This matrix limits the amount of data that may be encoded in 2D composites. The 2D composites can encode up to 56 numeric characters. Alpha characters and certain punctuation characters may also be encoded in the composite, but the maximum number of characters that can be encoded will be reduced significantly.

The composite component is referred to as the CC component and may be encoded as CC-A, CC-B or CC-C
-
CC-A: a variant of MicroPDF417

- CC-B: a MicroPDF417 symbol with new encoding rules
- CC-C: Composite Code C barcodes, is only used as the composite for GS1-128 and is based on PDF417 standards, can encode approximately 800 characters.

The composite portion is saved in the composite buffer. This buffer is loaded using the composite data command and is processed as GA- data as the barcode is processed.

## Composite data

Composite data generally follows the GS-1 standards, however, the GS-1 field processing and data compaction may be controlled by the setting the GS-1 options for Composite barcodes.

Function Composite data
ASCII [ESC]b @ \{information\} [NUL]
Hexadecimal 1BH 62H 40H \{information\} [NUL]
Decimal <27> <98> <64>\{information\} [NUL]
Note: GS-1 field processing and data compaction occurs when the barcode is generated not when the secondary field is defined.
Note: The secondary field will remain static until it is redefined.
An example would be:
[ESC] b @ [01]12345678901234[11]100909[30]123456[NUL]
The data field is a valid GS-1 identification string.
"[01]12345678901234[11]100909[30]123456" will be processed as:
"(01)12345678901234(11)100909(30)123456"
UPC A Composite
UPC A Composite uses a standard 11 digit UPC A code with composite data and optional Addenda data.


Figure 56 UPC A Composite Example

## UPC E Composite

UPC E Composite uses a standard zero suppressed 11 digit UPC E code with composite data and optional Addenda data.

Function UPC E Composite
ASCII [ESC] b B \{information\} [NUL]
Hexadecimal 1BH 62H 42H \{information\} [NUL]
Decimal <27> <98> <66>\{information\} [NUL]

[ESC] b @ [01]12345678901234[11]100909[30]123456[NUL] [ESC] b <66>01210000345[NUL]


The same as above with a EAN 5 Addenda
[ESC] b <66>01210000345+56[NUL]

Figure 57 UPC E Composite Example

## EANX Composite

EANX will process EAN 8, EAN 13 or EAN 14 based on the length of the linear data entered.
Function EANx Composite

ASCII [ESC] b C \{information\} [NUL]
Hexadecimal 1BH 62H 43H \{information\} [NUL]
Decimal <27> <98> <67>\{information\} [NUL]


Figure 58 EAN-13 Composite Example

## EAN GS1-128 Composite

GS1-128 will process a GS1-128 barcode With an CC-C composite component.

Function GS1-128 Composite
ASCII [ESC] b D \{information\} [NUL]
Hexadecimal 1BH 62H 44H \{information\} [NUL]
Decimal <27> <98> <68>\{information\} [NUL]

[ESC] b @ [01]12345678901234[11]100909[30]123456[NUL] [ESC] b <68> [01]12345678901234[NUL]

Figure 59 EAN GS1-128 Composite Example
GS1-Databar-14 Composite
GS1- Databar 14 composite will process a GS1- Databar 14 barcode With an CC-A, or CC-B composite component.


Figure 60 GS1-Databar 14 Composite Example

## GS1-Databar-Truncated Composite

GS1- Databar truncated composite will process a GS1- Databar truncated barcode With an CC-A, or CC-B composite component.

Function GS1-Databar Truncated 14 Composite
ASCII [ESC] b F \{information\} [NUL]
Hexadecimal 1BH 62H 46H \{information\} [NUL]
Decimal <27> <98> <70>\{information\} [NUL]

[ESC] b @ [01]12345678901234[11]100909[30]123456[NUL]
[ESC] b <70> 1234567890123[NUL]

Figure 61 GS1-Databar Truncated 14 Composite Example
GS1-Databar-Limited Composite
GS1- Databar limited composite will process a GS1- Databar limited barcode With an CC-A, or CC-B composite component.


Figure 62 GS1-Databar Limited Composite Example

## GS1-Databar-Expanded Composite

GS1- Databar Expanded composite will process a GS1- Databar Expanded barcode With an CC-A, or CC-B composite component.

Function GS1-Databar Expanded Composite
ASCII [ESC] b H \{information\} [NUL]
Hexadecimal 1BH 62H 48H \{information\} [NUL]
Decimal <27> <98> <72>\{information\} [NUL]


Figure 63 GS1-Databar Expanded Composite Example GS1-Databar-14 Stacked Composite

GS1- Databar Stacked composite will process a GS1- Databar Stacked barcode With an CC-A, or CC-B composite component.

| Function | GS1-Databar Stacked Composite |
| :--- | :--- |
| ASCII | [ESC] b I \{information\} [NUL] |
| Hexadecimal | 1BH 62H 49H \{information\} [NUL] |
| Decimal | $<27><98><73>$ \{information\} [NUL] |

[ESC] b @ [01]12345678901234[11]100909[30]123456[NUL]
[ESC] b <73> $1234567890123[$ NUL]

Figure 64 GS1-Databar Stacked Composite Example

GS1-Databar-Stacked Omni Composite
GS1- Databar Stacked Omni composite will process a GS1- Databar Stacked barcode With an CC-A, or CC-B composite component.

Function GS1-Databar Stacked Omni Composite
ASCII [ESC] b J \{information\} [NUL]
Hexadecimal 1BH 62H 4AH \{information\} [NUL]
Decimal <27> <98> <74>\{information\} [NUL]

[ESC] b @ [01]12345678901234[11]100909[30]123456[NUL]
[ESC] b <74> 1234567890123[NUL]

Figure 65 GS1-Databar Stacked Omni Composite Example

## GS1-Databar-Expanded Stacked Composite

GS1- Databar Expanded Stacked composite will process a GS1- Databar Expanded Stacked barcode With an CC-A, or CC-B composite component.

Function GS1-Databar Expanded Stacked Composite
ASCII [ESC] b K \{information\} [NUL]
Hexadecimal 1BH 62H 4BH \{information\} [NUL]
Decimal <27> <98> <75>\{information\} [NUL]

[ESC] b @
[01]12345678901234[11]100909[30]123456[NUL]
[ESC] b <75>
[01]12345678901234[11]100909[30]123456[NUL]

Figure 66 GS1-Databar Expanded Stacked Composite Example

## GS-1 Barcodes

The GS1 General Specification defines a global standard for encoding data about products. The full specification is available from www.gs1uk.org web site. Data is encoded as a series of number pairs where the first number, usually shown in (brackets) is an application identifier (AI) (See Table 21 RSS GS1 AI Codes), and the second is a formatted representation of the data. For example (401)6773 can be read as "Consignment Number 6773" where the Al (401) signifies that the data is a consignment number. Note that for the Model 9000 Al data is entered using [square] brackets ${ }^{25}$. This allows rounded brackets to be included in the data which as allowed by the specification. When the barcode symbol is generated these square brackets are replaced by rounded brackets in HRI if HRI is active.

The command to print an RSS expanded symbol representing:

(01)98898765432106(3202)012345(15)991231

Would be:
[ESC]b<23>[01]98898765432106[3202]012345[15]991231<0> or for stacked version:
[ESC]b<24>[01]98898765432106[3202]012345[15]991231<0>
Where:
(01) indicates that 98898765432106 is the Global Trade Item Number (3202) Indicates that 012345 Net weight, of 123.45 pounds
(15) indicates 991231 is the Best Before Date (YYMMDD)

| Symbology <br> Name | RSS-14 | RSS-14 <br> Truncated | RSS-14 <br> Stacked | RSS-14 <br> Stacked <br> Omni- <br> directional | RSS <br> Limited | RSS Expanded | RSS Expanded Stacked |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Omni- <br> Directionally <br> Scan-able | Yes | No | No | Yes | No | Yes | Yes |
| Transmitted Data | AI plus 14-digits | Al plus 14digits | AI plus 14-digits | Al plus 14digits | AI plus 14-digits | Primary Identification \& other AI element strings | Primary Identification \& other AI element strings |
| Maximum Data Capacity | $16$ <br> numeric (fixed) | 16 numeric (fixed) | $16$ <br> numeric (fixed) | 16 numeric (fixed) | $16$ <br> numeric (fixed) | 74 numeric 41 alpha | 74 numeric 41 alpha |
| Character Set | 0-9 | 0-9 | 0-9 | 0-9 | 0-9 | ASCII See Note | ASCII See Note |
| Number of rows | 1 | 1 | 2 | 2 | 1 | 1 | 2-11 |
| HRI Available | Yes | Yes | No | No | Yes | Yes | No |

Note: The printer will encode the Value and insert latch sequences based on the ASCII Input. Refer to the ISO/IEC 24724 specification for more information.

Table 20 RSS Characteristics Summary

[^16]Note: RSS-14 barcodes are sometimes printed in a composite form. The Model 9000 does not support the composite RSS/EAN13 barcode.

## GS-1 Al definitions

Note: This is not a complete list and is not intended to replace the GS1 General Specification.

| $\begin{gathered} \text { AI } \\ \text { See Notes }{ }_{2,3} \end{gathered}$ | Data Content | Format See Note ${ }_{1}$ | FNC1 Note $_{4}$ | Data Title |
| :---: | :---: | :---: | :---: | :---: |
| 00 | SSCC (Serial Shipping Container Code) | n2+n18 |  | SSCC |
| 01 | Global Trade Item Number (GTIN) | n2+n14 |  | GTIN |
| 02 | GTIN of Contained Trade Items | n2+n14 |  | CONTENT |
| 10 | Batch or Lot Number | n2+an.. 20 | (FNC1) | BATCH/LOT |
| $11_{2}$ | Production Date (YYMMDD) | n2+n6 |  | PROD DATE |
| $12_{2}$ | Due Date (YYMMDD) | n2+n6 |  | DUE DATE |
| $13_{2}$ | Packaging Date (YYMMDD) | n2+n6 |  | PACK DATE |
| $15_{2}$ | Best Before Date (YYMMDD) | n2+n6 |  | BEST BEFORE or SELL BY |
| $17_{2}$ | Expiration Date (YYMMDD) | n2+n6 |  | USE BY OR EXPIRY |
| 20 | Variant Number | n2+n2 |  | VARIANT |
| 21 | Serial Number | n2+an.. 20 | (FNC1) | SERIAL |
| 22 | Secondary Data Fields | n2+an.. 29 | (FNC1) | QTY /DATE /BATCH |
| 30 | Count of Items (Variable Measure Trade Item) | n2+n.. 8 | (FNC1) | VAR. COUNT |
| 37 | Count of Trade Items | n2+n.. 8 | (FNC1) | COUNT |
| 90 | Information Mutually Agreed Between Trading Partners | n2+an.. 30 | (FNC1) | INTERNAL |
| 91 to 99 | Company Internal Information | n2+an.. 30 | (FNC1) | INTERNAL |
| 240 | Additional Item Identification | n3+an.. 30 | (FNC1) | ADDITIONAL ID |
| 241 | Customer Part Number | n3+an.. 30 | (FNC1) | CUST. PART NO. |
| 242 | Made-to-Order Variation Number | n3+n.. 6 | (FNC1) | MTO VARIANT |
| 250 | Secondary Serial Number | n3+an.. 30 | (FNC1) | SECONDARY SERIAL |
| 251 | Reference to Source Entity | n3+an.. 30 | (FNC1) | REF. TO SOURCE |
| 253 | Global Document Type Identifier (GDTI) | n3+n13+n.. 17 | (FNC1) | DOC. ID |
| 254 | GLN Extension Component | n3+an.. 20 | (FNC1) | GLN EXTENSION |
| 400 | Customer's Purchase Order Number | n3+an.. 30 | (FNC1) | ORDER NUMBER |
| 401 | Consignment Number | n3+an.. 30 | (FNC1) | CONSIGNMENT |
| 402 | Shipment Identification Number | n3+n17 | (FNC1) | SHIPMENT NO. |
| 403 | Routing Code | n3+an.. 30 | (FNC1) | ROUTE |
| 410 | Ship to - Deliver to Global Location Number | n3+n13 |  | SHIP TO LOC |
| 411 | Bill to - Invoice to Global Location Number | n3+n13 |  | BILL TO |
| 412 | Purchased from Global Location Number | n3+n13 |  | PURCHASE FROM |
| 413 | Ship for - Deliver for - Forward to Global Location Number | n3+n13 |  | SHIP FOR LOC |
| 414 | Identification of a Physical Location Global Location Number | n3+n13 |  | LOC No |
| 415 | Global Location Number of the Invoicing Party | n3+n13 |  | PAY TO |
| 420 | Ship to - Deliver to Postal Code Within a Single Postal Authority | n3+an.. 20 | (FNC1) | SHIP TO POST |
| 421 | Ship to - Deliver to Postal Code with ISO Country Code | n3+n3+an.. 12 | (FNC1) | SHIP TO POST |
| 422 | Country of Origin of a Trade Item | n3+n3 | (FNC1) | ORIGIN |
| 423 | Country of Initial Processing | n3+n3+n.. 12 | (FNC1) | COUNTRY - INITIAL PROCESS. |
| 424 | Country of Processing | n3+n3 | (FNC1) | COUNTRY - PROCESS. |


| 425 | Country of Disassembly | n3+n3 | (FNC1) | COUNTRY - <br> DISASSEMBLY |
| :---: | :---: | :---: | :---: | :---: |
| 426 | Country Covering full Process Chain | n3+n3 | (FNC1) | COUNTRY - FULL PROCESS |
| $310 n_{3}$ | Net weight, kilograms (Variable Measure Trade Item) | n4+n6 |  | NET WEIGHT (kg) |
| $311 n_{3}$ | Length of first dimension, meters (Variable Measure Trade Item) | n4+n6 |  | LENGTH (m) |
| $312 n_{3}$ | Width, diameter, or second dimension, meters (Variable Measure Trade Item) | n4+n6 |  | WIDTH (m) |
| $313 n_{3}$ | Depth, thickness, height, or third dimension, meters (Variable Measure Trade Item) | n4+n6 |  | HEIGHT (m) |
| $314 n_{3}$ | Area, square meters (Variable Measure Trade Item) | n4+n6 |  | AREA (m2) |
| $315 n_{3}$ | Net volume, liters (Variable Measure Trade Item) | n4+n6 |  | NET VOLUME (I) |
| $316 n_{3}$ | Net volume, cubic meters (Variable Measure Trade Item) | n4+n6 |  | NET VOLUME (m3) |
| $320 n_{3}$ | Net weight, pounds (Variable Measure Trade Item) | n4+n6 |  | WEIGHT (lb) |
| $321 n_{3}$ | Length or first dimension, inches (Variable Measure Trade Item) | n4+n6 |  | LENGTH (i) |
| $322 n_{3}$ | Length or first dimension, feet (Variable Measure Trade Item) | n4+n6 |  | LENGTH (f) |
| $323 n_{3}$ | Length or first dimension, yards (Variable Measure Trade Item) | n4+n6 |  | LENGTH (y) |
| $324 n_{3}$ | Width, diameter, or second dimension, inches (Variable Measure Trade Item) | n4+n6 |  | WIDTH (i) |
| $325 n_{3}$ | Width, diameter, or second dimension, feet (Variable Measure Trade Item) | n4+n6 |  | WIDTH (f) |
| $326 n_{3}$ | Width, diameter, or second dimension, yards (Variable Measure Trade Item | n4+n6 |  | WIDTH (y) |
| $327 n_{3}$ | Depth, thickness, height, or third dimension, inches (Variable Measure Trade Item) | n4+n6 |  | HEIGHT (i) |
| $328 \mathrm{n}_{3}$ | Depth, thickness, height, or third dimension, feet (Variable Measure Trade Item) | n4+n6 |  | HEIGHT (f) |
| $329 n_{3}$ | Depth, thickness, height, or third dimension, yards (Variable Measure Trade Item) | n4+n6 |  | HEIGHT (y) |
| $330 n_{3}$ | Logistic weight, kilograms | n4+n6 |  | GROSS WEIGHT (kg) |
| $331 n_{3}$ | Length or first dimension, meters | n4+n6 |  | LENGTH (m), log |
| $332 n_{3}$ | Width, diameter, or second dimension, meters | n4+n6 |  | WIDTH (m), log |
| $333 n_{3}$ | Depth, thickness, height, or third dimension, meters | n4+n6 |  | HEIGHT (m), log |
| $334 n_{3}$ | Area, square meters | n4+n6 |  | AREA (m2), log |
| $335 n_{3}$ | Logistic volume, liters | n4+n6 |  | VOLUME (I), log |
| $336 n_{3}$ | Logistic volume, cubic liters | n4+n6 |  | VOLUME (m3), log |
| $337 n_{3}$ | Kilograms per square meter | n4+n6 |  | KG PER m ${ }^{2}$ |
| $340 n_{3}$ | Logistic weight, pounds | n4+n6 |  | GROSS WEIGHT (lb) |
| $341 n_{3}$ | Length or first dimension, inches | n4+n6 |  | LENGTH (i), log |
| $342 n_{3}$ | Length or first dimension, feet | n4+n6 |  | LENGTH (f), log |
| $343 n_{3}$ | Length or first dimension, yards | n4+n6 |  | LENGTH (y), log |
| $344 n_{3}$ | Width, diameter, or second dimension | n4+n6 |  | WIDTH (i), log |
| $345 n_{3}$ | Width, diameter, or second dimension | n4+n6 |  | WIDTH (f), log |
| $346 \mathrm{n}_{3}$ | Width, diameter, or second dimension | n4+n6 |  | WIDTH (y), log |
| $347 n_{3}$ | Depth, thickness, height, or third | n4+n6 |  | HEIGHT (i), log |


|  | dimension |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $348 \mathrm{n}_{3}$ | Depth, thickness, height, or third dimension | n4+n6 |  | HEIGHT (f), log |
| $349 n_{3}$ | Depth, thickness, height, or third dimension | n4+n6 |  | HEIGHT (y), log |
| $350 n_{3}$ | Area, square inches (Variable Measure Trade Item) | n4+n6 |  | AREA ( ${ }^{2}$ ) |
| $351 n_{3}$ | Area, square feet (Variable Measure Trade Item) | n4+n6 |  | AREA ( $\mathrm{f}^{2}$ ) |
| $352 n_{3}$ | Area, square yards (Variable Measure Trade Item) | n4+n6 |  | AREA ( $\mathrm{y}^{2}$ ) |
| $353 \mathrm{n}_{3}$ | Area, square inches | n4+n6 |  | AREA ( $\mathrm{i}^{2}$ ), log |
| $354 n_{3}$ | Area, square feet | n4+n6 |  | AREA ( $\mathrm{f}^{2}$ ), log |
| $355 n_{3}$ | Area, square yards | n4+n6 |  | AREA ( $\mathrm{y}^{2}$ ), log |
| $356 n_{3}$ | Net weight, troy ounces (Variable Measure Trade Item) | n4+n6 |  | NET WEIGHT (t) |
| $357 n_{3}$ | Net weight (or volume), ounces (Variable Measure Trade Item) | n4+n6 |  | NET VOLUME (oz) |
| $360 n_{3}$ | Net volume, quarts (Variable Measure Trade Item) | n4+n6 |  | NET VOLUME (q) |
| $361 n_{3}$ | Net volume, gallons U.S. (Variable Measure Trade Item) | n4+n6 |  | NET VOLUME (g) |
| $362 n_{3}$ | Logistic volume, quarts | n4+n6 |  | VOLUME (q), log |
| $363 \mathrm{n}_{3}$ | Logistic volume, gallons U.S. | n4+n6 |  | VOLUME (g), log |
| $364 n_{3}$ | Net volume, cubic inches (Variable Measure Trade Item) | n4+n6 |  | VOLUME (i3), log |
| $365 n_{3}$ | Net volume, cubic feet (Variable Measure Trade Item) | n4+n6 |  | VOLUME (f3), log |
| $366 n_{3}$ | Net volume, cubic yards (Variable Measure Trade Item) | n4+n6 |  | VOLUME (y3), log |
| $367 n_{3}$ | Logistic volume, cubic inches | n4+n6 |  | VOLUME (q), log |
| $368 \mathrm{n}_{3}$ | Logistic volume, cubic feet | n4+n6 |  | VOLUME (g), log |
| $369 n_{3}$ | Logistic volume, cubic yards | n4+n6 |  | VOLUME (i3), log |
| $390 n_{3}$ | Applicable Amount Payable, local currency | n4+n.. 15 | (FNC1) | AMOUNT |
| 391n ${ }_{3}$ | Applicable Amount Payable with ISO Currency Code | n4+n3+n.. 15 | (FNC1) | AMOUNT |
| $392 n_{3}$ | Applicable Amount Payable, single monetary area (Variable Measure Trade Item) | n4+n.. 15 | (FNC1) | PRICE |
| 393n3 | Applicable Amount Payable with ISO Currency Code (Variable Measure Trade Item) | n4+n3+n.. 15 | (FNC1) | PRICE |
| 7001 | NATO Stock Number (NSN) | n4+n13 | (FNC1) | NSN |
| 7002 | UN/ECE Meat Carcasses and Cuts Classification | n4+an.. 30 | (FNC1) | MEAT CUT |
| 7003 | Expiration Date and Time | n4+n10 | (FNC1) | EXPIRY TIME |
| 703s | Approval Number of Processor with ISO Country Code | n4+n3+an.. 27 | (FNC1) | PROCESSOR \# s |
| 8001 | Roll Products (Width, Length, Core Diameter, Direction, Splices) | n4+n14 | (FNC1) | DIMENSIONS |
| 8002 | Cellular Mobile Telephone Identifier | n4+an.. 20 | (FNC1) | CMT No |
| 8003 | Global Returnable Asset Identifier (GRAI) | n4+n13+an.. 16 | (FNC1) | GRAI |
| 8004 | Global Individual Asset Identifier (GIAI) | n4+an.. 30 | (FNC1) | GIAI |
| 8005 | Price Per Unit of Measure | n4+n6 | (FNC1) | PRICE PER UNIT |
| 8006 | Identification of the Components of a Trade Item | n4+n14+n2+n2 | (FNC1) | GCTIN |
| 8007 | International Bank Account Number (IBAN) | n4+an.. 30 | (FNC1) | IBAN |


| 8008 | Date and Time of Production | n4+n8+n..4 | (FNC1) | PROD TIME |
| :--- | :--- | :--- | :--- | :--- |
| 8018 | Global Service Relation Number (GSRN) | $\mathrm{n} 4+\mathrm{n} 18$ | (FNC1) | GSRN |
| 8020 | Payment Slip Reference Number | $\mathrm{n} 4+\mathrm{n} . .25$ | (FNC1) | REF No |
| 8100 | GS1-128 Coupon Extended Code | $\mathrm{n} 4+\mathrm{n} 6$ | (FNC1) | - |
| 8101 | GS1-128 Coupon Extended Code | $\mathrm{n} 4+\mathrm{n} 1+\mathrm{n} 5+\mathrm{n} 4$ | (FNC1) | - |
| 8102 | GS1-128 Coupon Extended Code | $\mathrm{n} 4+\mathrm{n} 1+\mathrm{n} 1$ | (FNC1) | - |
| 8110 | Coupon Code Identification for Use in <br> North America | $\mathrm{n} 4+\mathrm{an} . .30$ | (FNC1) | - |

Notes: As of GS1 General Specifications Version 10.0 Issue 1, Jan-2010
Note $_{1}$ The first position indicates the length (number of digits) of the GS1 Application Identifier.
The following value refers to the format of the data content. The following conventions applied:

| n | numeric digit |
| :---: | :--- |
| an | any valid character |
| n3 3 | numeric digits, fixed length |
| n.. 3 | up to 3 numeric digits |
| an.. 3 | up to 3 valid characters |

Note $_{2}$ If only year and month are available, DD must be filled with two zeroes.
Note $_{3}$ The fourth digit of this GS1 Application Identifier indicates the implied decimal point position. Example:

3100 Net weight in kg without a decimal point
3102 Net weight in kg with two decimal points
Note 4 (FNC1): All GS1 Application Identifiers indicated with (FNC1) are defined as variable length and must be limited by a Function 1 Symbol Character unless this Element String is the last one to be encoded in the symbol. The printer will automatically insert FNC1's when and as required.

Table 21 RSS GS1 AI Codes

Note: It is beyond the scope of this document to define all the AI fields, there meaning, requirements and restrictions. The Model 9000 will do minimal validation of the Al fields to assure that the barcode can be generated. It will not assure that the barcode meets the GS-1 standard. Refer to the GS-1 General specification for additional information.

## Mandatory Al Associations

Some Al fields must be associated with other fields. For example a date field must be associated with some item so cannot be used alone.

| AI | Definition Al |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 01 \text { or } 02 \\ \text { with } \mathrm{N} 1=9 \end{gathered}$ | Identification of a Variable Measure Trade Item | 30, 3nnn1 or 3nnn2 or 8001 | Mandatory association with variable measure information Only GS1-128, ITF-14, and GS1 DataBar Expanded Bar Code Symbols can encode a GTIN with $\mathrm{N} 1=9$. |
| 02 | Identification of logistic unit contents | 00 | Mandatory association with an SSCC (Serial Shipping Container Code) |
| 02 | Identification of logistic unit contents | 37 | Mandatory count of the contained trade items |
| 10 | Batch/lot number | 01or 02 | Mandatory association with a Global Trade Item Number (GTIN) or with the identification of logistic unit contents |
| $\begin{gathered} 11,13,15, \\ 17 \end{gathered}$ | Dates | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 12 | Due date | $\begin{aligned} & 8020 \text { and } \\ & 415 \end{aligned}$ | Mandatory association with the payment slip reference number ( Al (8020)) and the Global Location Number (GLN) of the invoicing party |
| 20 | Product variant | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 21 | Serial number | 01 | Mandatory association with a GTIN of a single trade item (a serial number cannot apply to a grouping of trade items) |
| 22 | Secondary data health industry | 01 | Mandatory association with a GTIN |
| 240 | Additional product identification | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 241 | Customer part number | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 242 | Made-to-Order Variation Number | $\begin{gathered} 01 \text { or } 02 \\ \text { with } \mathrm{N} 1= \\ 9 \end{gathered}$ | Mandatory association with a GTIN-14 with Indicator Digit 9 represents a Custom Industrial Supply Item |
| 250 | Secondary serial number | 01 | Mandatory association with a GTIN (a secondary serial number cannot apply to a grouping of trade items) |
| 251 | Reference to source entity | 01 | Mandatory association with GTIN of the trade item |
| 254 | Extension component of a GLN | 414 | Mandatory association with AI (414). Only GS1128, GS1 DataBar Expanded symbologies, and EPC RFID tags are valid. This is used with GLN and not GTIN. |
| 30 | Variable count | 01 or 02 | Mandatory association with a variable measure GTIN (e.g., a GTIN-14 starting with the digit 9) or the identification of variable measure content of a logistic unit |
| $3 \mathrm{nnn}_{1}$ | Trade measures that cannot be summed | 01 | Mandatory association with a variable measure GTIN (e.g., a GTIN-14 starting with the digit 9) |
| $3 \mathrm{nnn}_{2}$ | Trade measures that can be summed | 01 or 02 | Mandatory association with a variable measure GTIN (e.g., a GTIN-14 starting with the digit 9) or the identification of variable measure content of a logistic unit |
| $3 n_{n n}$ | Logistic measures | 00 or 01 | Mandatory association with an SSCC or a variable measure GTIN (e.g., a GTIN-14 starting with the digit 9) |
| 337n | Kilograms per square metre | 01 | Mandatory association with a GTIN |
| 37 | Count of units | 02 | Mandatory association with the identification of |


|  | contained |  | logistic unit contents |
| :---: | :---: | :---: | :---: |
| 390n | Amount payable single monetary area | $\begin{gathered} 8020 \text { and } \\ 415 \end{gathered}$ | Mandatory association with the payment slip reference number, Al (8020), and the GLN of the invoicing party |
| 391n | Amount payable - with ISO currency code | $\begin{gathered} 8020 \text { and } \\ 415 \end{gathered}$ | Mandatory association with the payment slip reference number, Al (8020), and the GLN of the invoicing party |
| 392n | Amount payable single monetary unit | 01 | Mandatory association with variable measure GTIN (e.g., a GTIN-14 starting with the digit 9) |
| 393n | Amount payable - with ISO currency code | 01 | Mandatory association with variable measure GTIN (e.g., a GTIN-14 starting with the digit 9) |
| 403 | Routing code | 00 | Mandatory association with an SSCC |
| 415 | GLN of the invoicing party | 8020 | Mandatory association with payment slip reference number, AI (8020) |
| 422 | Country of origin | 01 or 02 | Mandatory association with a GTIN |
| 423 | Country of initial | 01 or 02 | Mandatory association with a GTIN or with the processing identification of logistic unit contents |
| 424 | Country of processing | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 425 | Country of disassembly | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 426 | Country of full processing | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 7001 | NATO stock number | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 7002 | UN/ECE meat carcasses and cuts classification | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 703(s) | Approval number of processor | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 8001 | Variables of roll products | 01 | Mandatory association with a variable measure GTIN (e.g., an GTIN-14 starting with the digit 9) |
| 8005 | Price per unit of measure | $\begin{gathered} \hline 01 \text { or } 02 \\ \text { with } \mathrm{N} 1= \\ 9 \end{gathered}$ | Mandatory association with a variable measure GTIN or the identification of variable measure content of a logistic unit |
| 8007 | International Bank Account Number, AI (8007) | $\begin{gathered} 8020 \text { and } \\ 415 \end{gathered}$ | Mandatory association with the payment slip reference number, Al (8020), and the GLN of the invoicing party |
| 8008 | Date and time of production | 01 or 02 | Mandatory association with a GTIN or with the identification of logistic unit contents |
| 8020 | Payment slip reference number, AI (8020) | 415 | Mandatory association with the GLN of the invoicing party |

Note $_{1}$ Is (3nnn) where the first three digits are 312, 313, 324, 325, 326, 327, 328, and 329
Note 2 Is (3nnn) where the first three digits are 310, 311, 314, 315, 316, 320, 321, 322, 323, $350,351,352,356,357,360,361,364,365$, and 366
Note $_{3}$ Is (3nnn) where the first three digits are 330, 331, 332, 333, 334, 335, 336, 340, 341, $342,343,344,345,346,347,348,349,353,354,355,362,363,367,368$, and 369

Table 22 Mandatory AI Code Associations

Note: It is beyond the scope of this document to define all the Al fields, there meaning, requirements and restrictions. The Model 9000 will do minimal validation of the Al fields to assure that the barcode can be generated. It will not assure that the barcode meets the GS-1 standard. Refer to the GS-1 General specification for additional information.

## Invalid AI associations

Some Al fields cannot be used with other AI fields.

| AI | Definition | Al | Definition |  |
| :---: | :---: | :---: | :---: | :---: |
| 01 | Identification of a trade item | 01 | Identification of a trade item | Duplicate Global Trade Item Numbers(GTINs) with different values |
| 01 | Identification of a trade item | 02 | Identification of logistic unit contents | Al (02) must not be used for the identification of trade items contained in a trade item. |
| 01 | Identification of a trade item | 37 | Count of units contained | The count of units contained would duplicate the master data of the GTIN. Al (37) may only be used with Al (02). |
| 22 | Secondary data for the health industry | 30 | Count | Duplicate counts with different values |
| 22 | Secondary data for the health industry | 10 | Batch/lot number | Duplicate lot numbers with different values |
| 22 | Secondary data for the health industry | 17 | Expiration date | Duplicate expiration date with different values |
| 22 | Secondary data for the health industry | 21 | Serial number | Duplicate serial numbers with different values |
| 242 | Made-to-Order Variation | $\begin{gathered} \hline 01 \text { or } 02 \\ \text { with } \mathrm{N} 1 \\ \text { not equal } \\ \text { to } 9 \\ \hline \end{gathered}$ | Identification of a Variable Measure Trade Item | Made-to-Order Variation can only be used with a GTIN-14, Indicator digit 9. This represents a Custom Industrial Supply Item |
| 420 | Ship to postal code, single postal authority | 421 | Ship to postal code with ISO country code | Only one ship to postal code may be applied on an item |
| 422 | Country of origin of a trade item | 426 | Country of full processing | Duplication of country of origin of a trade item (covered by country of full processing) |
| 423 | Country of initial processing | 426 | Country of full processing | Duplication of country of initial processing(covered by country of full processing) |
| 424 | Country of processing | 426 | Country of full processing | Duplication of country of processing(covered by country of full processing) |
| 425 | Country of disassembly | 426 | Country of full processing | Duplication of country of disassembly(covered by country of full processing) |
| 390n | Amount payablesingle monetary area | 391n | Amount payable with ISO currency code | Only one amount payable Element String may be applied on a payment slip |
| 392n | Amount Payable for a Variable Measure Trade Item - Single Monetary Area | 393n | Amount Payable for a Variable Measure Trade Item and ISO Currency Code | Only one amount payable Element String may be applied on a Variable Measure Trade Item. |
| 8006 | Component identification | 01 | Identification of a trade item | Other GTINs cannot be used with AI (8006). The trade item is identified by a GTIN contained in the Al (8006). |

Table 23 Invalid AI Code Associations

Note: It is beyond the scope of this document to define all the Al fields, there meaning, requirements and restrictions. The Model 9000 will do minimal validation of the Al fields to assure that the barcode can be generated. It will not assure that the barcode meets the GS-1 standard. Refer to the GS1 General specification for additional information.

## GS-1 Al fields with a Check Digit

Refer to the GS-1 General specification for the method used to calculate the check digit. In some cases the check digit is not encoded into the barcode. However, the check digit is always shown in the human readable interpretation and transmitted by the decoder even though it is not explicitly encoded in RSS-14 and RSS Limited symbols. The printer does not check the check digit and whatever is passed in will be printed in the HRI. The printer however will format the barcode without the check digit and the barcode reader will reinsert it into the resulting data. The result is that if the check digit passed in is not correct, it will be printed in the HRI but may be reported as a different character by the reader.

To make check digit generation easier, the printer will (optionally) automatically generate and insert a check digit in several AI fields. To trigger automatic insertion, the GS-1 AI check digit option should be activated and a "*" character used in the location of the check digit.

| Al |  | Data Content | Check Digit <br> Location |  | Data Title |
| :---: | :--- | :--- | :---: | :--- | :--- |
| 00 | SSCC (Serial Shipping Container Code) | $\mathrm{n} 2+\mathrm{n} 18$ | n 18 | SSCC |  |
| 01 | Global Trade Item Number (GTIN) | $\mathrm{n} 2+\mathrm{n} 14$ | $\mathrm{n} 12, \mathrm{n} 13$, or n14 | GTIN |  |
| 02 | GTIN of Contained Trade Items | $\mathrm{n} 2+\mathrm{n} 14$ | n 14 | CONTENT |  |
| 253 | Global Document Type Identifier (GDTI) | $\mathrm{n} 3+\mathrm{n} 13+\mathrm{n} . .17$ | n 13 | DOC. ID |  |
| 402 | Shipment Identification Number | $\mathrm{n} 3+\mathrm{n} 17$ | n 17 | SHIPMENT NO. |  |
| 410 | Ship to - Deliver to Global Location <br> Number | $\mathrm{n} 3+\mathrm{n} 13$ | n 13 | SHIP TO LOC |  |
| 411 | Bill to - Invoice to Global Location <br> Number | $\mathrm{n} 3+\mathrm{n} 13$ | n 13 | BILL TO |  |
| 412 | Purchased from Global Location <br> Number | $\mathrm{n} 3+\mathrm{n} 13$ | n 13 | PURCHASE FROM |  |
| 413 | Ship for - Deliver for - Forward to Global <br> Location Number | $\mathrm{n} 3+\mathrm{n} 13$ | SHIP FOR LOC |  |  |
| 414 | Identification of a Physical Location - <br> Global Location Number | $\mathrm{n} 3+\mathrm{n} 13$ | LOC No |  |  |
| 415 | Global Location Number of the Invoicing <br> Party | $\mathrm{n} 3+\mathrm{n} 13$ | n 13 | PAY TO |  |
| 8003 | Global Returnable Asset Identifier <br> (GRAI) | $\mathrm{n} 4+\mathrm{n} 13+\mathrm{an} . .16$ | GRAI |  |  |
| 8018 | Global Service Relation Number <br> (GSRN) | $\mathrm{n} 4+\mathrm{n} 18$ | n 18 | GSRN |  |

Table 24 Al's supported by automatic check digit generation
Note: Automatic Check Character generation for Price/Weight, Four-Digit Price, and Five-Digit Price fields are not supported by automatic check character generation.
Note: If additional AI fields with check characters are added to the GS1 standards they will not be processed by the printer unless the printer's firmware is updated.

## Controlling Barcodes

## Unified Commands

To making control of linear and two dimensional barcode more consistent, all barcode control commands will follow a similar format. The

| Function | Control bar code |
| :---: | :---: |
| ASCII | [ESC] [EM] <b> <f> <v> |
| Hexadecimal | 1BH 19H <b> <f> <v> |
| Decimal | <27> <25> <b> <f> <v> |
| Where: |  |
| <b> | Barcode type |
|  | b, 62H, 98D General Barcodes |
|  | d, 64H, 100D Datamatrix Barcodes |
|  | r, 72H, 114D GS-1 Databar (RSS) Barcodes |
|  | 4, 34H, 52D Code 49 barcodes |
|  | 6, 36H, 54D Code 49 barcodes |
|  | a, 61H, 97D Aztec Barcodes |
|  | m, 6DH, 109D Maxicode Barcodes. |
|  | q, 71Hm 113D QRCode |
|  | E, 45H, 69D PDF417 |
|  | c,63H,99D Composite Barcodes. |
| <f> | Common Format Parameter to all barcodes |
|  | W, 57H, 87D Minimum bar width or Scale |
|  | J, 4AH, 74D Justification $0=$ Left, 1 = Center, 3 = Right |
|  | V, 56H, 86D Vertical Height (value*4) dots at 203 Dots per inch |
|  | G, 47H, 71D GS1 Mode. |
|  | P, 50H, 80D HRI Position $0-$ Off, 1 = Top, $2=$ Bottom, 3 = Both |
|  | F, 46H, 70D HRI Font |
|  | H, 48H, 72D Space above and below the barcode in dots |
|  | C, 43H, 67D Composite Secondary Mode |
|  | Additional barcode specific controls are available |
| <v> | Value of the parameter. |
| Description | The [ESC] [EM] <b> <p> <n> command sets general barcode format parameters. In some cases a specific barcode may set a barcode specific parameter. For example the general element width value is generally not optimal for 2D barcodes so each 2D barcode will use its own parameter. |

General Settings
$\mathrm{f}=\mathrm{W}, 57 \mathrm{H}, 87 \mathrm{D} \quad$ Minimum bar width or scale
Minimum bar width or Scale
$f=J, 4 A H, 74 D \quad$ Justification

$$
0 \text { = Left, } 1 \text { = Center, } 3 \text { = Right }
$$


$f=O, 4 F H, 79 D \quad$ sets a left offset to be added to the barcode

## Barcode Control Summery Chart

| Barcode Type <b> | Format Parameter <f> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barcode | W | J | V | G | P | F | f | H | K | X | Y | C | R | E | Q | S | M |
| Interleaved 2 of 5 | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| Code 39 | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| Code 128 | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| UPC A | b | b | b |  | b | b | b | b |  |  |  | b |  |  |  |  |  |
| UPC E | b | b | b |  | b | b |  | b |  |  |  | b |  |  |  |  |  |
| EAN-13 | b | b | b |  | b | b | b | b |  |  |  | b |  |  |  |  |  |
| EAN-8 | b | b | b |  | b | b |  | b |  |  |  | b |  |  |  |  |  |
| Code 93 | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| Code 93 | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| Codabar | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| Data Bar | rb | rb | rb | r | rb | rb |  | rb |  |  |  |  |  |  |  |  |  |
| Data Bar Stacked | rb | rb | rb | $r$ | r | r |  | rb | $r$ |  |  | b |  |  |  | r |  |
| EAN-128 | b | b | b | b | b | b |  | b |  |  |  | b |  |  |  |  |  |
| EAN-14 | b | b | b | b | b | b | b | b |  |  |  |  |  |  |  |  |  |
| ITF-14 | b | b | b |  | b | b |  | b |  |  |  |  |  |  |  |  |  |
| Code 49 | 4 | 4 b | 4 b | 4 | 4 | 4 |  | 4 b |  |  |  |  |  |  |  |  |  |
| Code 16K | 6 | 6 b | 6 b | 6 | 6 | 6 |  | 6 b |  |  |  |  |  |  |  |  |  |
| PDF417 |  |  |  | E |  |  |  |  |  | E | E | E | E | E |  |  |  |
| Maxicode | m | mb |  | m | m | m |  | m |  |  |  |  |  |  |  |  | m |
| Datamatrix | d |  |  | d | d | d |  | d |  |  |  |  |  | d | d |  | d |
| QRCode | q | $a b$ |  | q | q | q |  | q |  |  |  | q |  | q |  |  | q |
| Aztec | a | $a b$ |  | a | a | a |  | a |  |  |  |  |  | a |  |  | A |
| Code One | 1 | 1b |  |  | 1 | 1 |  | b |  |  |  |  |  |  |  |  | 1 |
| Composite | c | b |  | c | * | * |  | b | c |  |  |  |  |  |  |  | c |

Table 25 Barcode Control Commands
Note: If there are two letters listed, either command may be used. Both will set a common value.

## PDF417 Print Options

| Function | PDF 417 bar code control |
| :--- | :--- |
| ASCII | [ESC] [EM] E < f $><v>$ |
| Hexadecimal | 1 BH $19 \mathrm{H} 45 \mathrm{H}<\mathrm{f}><v>$ |
| Decimal | $<27><25><69><f><v>$ |
| IPCL | None |
| Description | This command alters the way PDF 417 barcodes are generated and |
| Where | printed. <br> f $=$ Feature to control and $v=$ the value of the feature. |

$f=X, 58 \mathrm{H}, 88 \mathrm{D} \quad$ Set encoding $X$ aspect.
$2 \leq \mathrm{v} \leq 6$
[Default]
$v=3$
Note: the X aspect is equivalent to the module width and affects the maximum number of columns that will fit in the print zone.
$f=Y, 59 H, 89 D \quad$ Set encoding $Y$ aspect.
$2 \leq \mathrm{v} \leq 8$
[Default]
$\mathrm{v}=3$
$\mathrm{f}=\mathrm{H}, 48 \mathrm{H}, 72 \mathrm{D}$
Blank Space before and after the barcode
$0 \leq v \leq 255$. Default is 8 dots
$\mathrm{f}=\mathrm{C}, 43 \mathrm{H}, 67 \mathrm{D} \quad$ Set encoding columns
$0 \leq v \leq 30$ (Values $>8$ generally will not fit in the print zone)
[Default] $\quad v=0$ (automatic mode)
If $v=0$ then automatic processing is used.
When automatic processing is specified, the number of columns is calculated with the number of code words based on the size of the printable area.
$f=R, 52 H, 82 D \quad$ Set encoding rows
$v=0$ or $3 \leq v \leq 90$
[Default] $\quad v=0$
$\mathrm{f} v=0$ then automatic processing is used.
When automatic processing is specified, the number of rows is calculated with the number of code words or the range of the printable area.


Note: If the number of rows is specified, it will be the minimum printed. If more are required this setting will be ignored.
Note: The number of rows times the number of columns must not exceed 928.
Typically the row and columns should be set to 0 so that auto encoding will be used. The X and Y aspect represent the number of dots horizontally and vertically to form the smallest image element. Values of 2 for each produce very small elements, and are probably too small unless good paper is used. The defaults are 3 by 9 , which produce easily readable barcodes.
$f=E, 45 H, 69 D \quad$ Set error correction level.
If $v$ between 1 and 40 it is interpreted as a percentage of the data.
If $v$ is between 48 and 56 it is set to a specific level of 0 to 8.

Error correcting levels are selected using one of two methods. The first is a fixed level.

| v | Level | Code Word |
| :---: | :---: | :---: |
| 48 | Level 0 | 2 |
| 49 | Level 1 | 4 |
| 50 | Level 2 | 8 |
| 51 | Level 3 | 16 |
| 52 | Level 4 | 32 |
| 53 | Level 5 | 64 |
| 54 | Level 6 | 128 |
| 55 | Level 7 | 256 |
| 56 | Level 8 | 512 |

The second way is to determine correction level based on a percent of the encoded data in the barcode where the value $v$ is a percent between $1 \%$ and $40 \%$. The correction level is determined by calculating a correction factor based on the formula: $\mathrm{Cf}=((\mathrm{v}$ * Encoded Length) +50 )/100 then using Cf in the following table to set the correction level.

| Cf | Level | Code Words |
| :---: | :---: | :---: |
| $0-3$ | Level 1 | 4 |
| $4-10$ | Level 2 | 8 |
| $11-20$ | Level 3 | 16 |
| $21-45$ | Level 4 | 32 |
| $46-100$ | Level 5 | 64 |
| $101-200$ | Level 6 | 128 |
| $201-400$ | Level 7 | 256 |
| 401 Up | Level 8 | 512 |

For example: if the encoded data length is 80 bytes and $v=10 \%$ then $\mathrm{Cf}=((10 * 80)$ $+50) / 100$ or $\mathrm{Cf}=8$. Therefore Cf is between 4 and 10 so Level 2 correction would be used.

The encoded length is not the same as the input length. The input data is first compressed into Text, Octet and Numeric data and the resulting encoded data length is then used to calculate the correction level.


Note: Setting the Error correction higher will increase the size of the barcode and reduce the available space for data.
Note: The encoding may be set to 0 which will do a $10 \%$ error correction however this is not the same as 1.0 does not do round off and provides compatibility with legacy products. Level 8 is never used.

| $f=P, 50 H, 80 D$ | HRI Position |
| :---: | :---: |
| $f=F, 46 H, 70 D$ | $\mathrm{f}=0-\mathrm{Off}, \mathrm{f}=1$ - Top, $\mathrm{f}=2$ - Bottom, $\mathrm{f}=3$ - Both HRI Font |
|  | $\mathrm{f}=0$ Medium, $\mathrm{f}=1$ Larger, $\mathrm{f}-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.) |

Data Matrix Print Options

## Function Data Matrix bar code control

ASCII [ESC] [EM] d <f> <v>
Hexadecimal 1BH 19H 64H <f> <v>
Decimal <27> <25> <100><f> <v>
IPCL None
Description This command alters the way Data Matrix barcodes are generated and printed.
Where $\quad f=$ Feature to control and $v=$ the value of the feature.

| $f=H, 48 H, 72 D$ | Blank Space before and after the barcode |
| :--- | :--- |
| $f=M, 4 D H, 77$ | Set minimum matrix size. $v=1-30,0$ sets to auto. |


| Size(v) | Symbol Size | Size(v) | Symbol Size | Size(v) | Symbol Size |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Auto | 11 | $36 \times 36$ | 21 | $104 \times 104$ |
| 1 | $10 \times 10$ | 12 | $40 \times 40$ | 22 | $120 \times 120$ |
| 2 | $12 \times 12$ | 13 | $44 \times 44$ | 23 | $132 \times 132$ |
| 3 | $14 \times 14$ | 14 | $48 \times 48$ | 24 | $144 \times 144$ |
| 4 | $16 \times 16$ | 15 | $52 \times 52$ | 25 | $8 \times 18$ |
| 5 | $18 \times 18$ | 16 | $64 \times 64$ | 26 | $8 \times 32$ |
| 6 | $20 \times 20$ | 17 | $72 \times 72$ | 27 | $12 \times 26$ |
| 7 | $22 \times 22$ | 18 | $80 \times 80$ | 28 | $12 \times 36$ |
| 8 | $24 \times 24$ | 19 | $88 \times 88$ | 29 | $16 \times 36$ |
| 9 | $26 \times 26$ | 20 | $96 \times 96$ | 30 | $16 \times 48$ |
| 10 | $32 \times 32$ |  |  |  |  |

Figure 67 ECC - 200 Size options
Note: If the data will not fit in the selected size, the printer will revert to auto mode.
$f=Q, 52 H, 82 \quad$ if $v=1$ Only square matrix sizes will be selected in auto mode $y . v=0-1$
$\mathrm{f}=\mathrm{W} 57 \mathrm{H}, 87 \mathrm{D}$
$\mathrm{f}=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D})$
Set the minimum element width and height.
$\mathrm{v}=1-10,6$ is the default.
A width of 1 or 2 may be unreadable.
It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode.
GS1 Mode. (See General description above)
Note: If in GS1 mode, a FNC1 is added to the beginning of the symbol and that the compression is slightly altered. GS1 data formatting and compaction are active and the input must follow the GS1 rules.

$$
\begin{aligned}
& f=P, 50 H, 80 D \\
& f=F, 46 H, 70 D
\end{aligned}
$$

HRI Position
$\mathrm{f}=0$ - Off, $\mathrm{f}=1$ - Top, $\mathrm{f}=2$ - Bottom, $\mathrm{f}=3$ - Both
HRI Font
$f=0$ Medium, $f=1$ Larger, $f-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.)

## Code 49 Print Options

Function Code 49 Options
ASCII [ESC] [EM] 4 <f> <v>
Hexadecimal 1BH 19H 34H <f> <v>
Decimal <27> <25> <52><f> <v>
IPCL None
Description This command alters the way Code49 barcodes are generated and printed.
Where $\quad f=$ Feature to control and $v=$ the value of the feature.

| $\mathrm{f}=\mathrm{W} 57 \mathrm{H}, 87 \mathrm{D}$ | Set the minimum element width. $\mathrm{v}=1-10,3$ is the default. <br> A width of 1 may be unreadable. It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode. |
| :---: | :---: |
| $\begin{aligned} & \mathrm{f}=\mathrm{H}, 48 \mathrm{H}, 72 \mathrm{D} \\ & \mathrm{f}=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D} \end{aligned}$ | Blank Space between the barcode and the HRI Default 8 GS1 Mode. (See General description above) By default Databar barcodes use GS1 formatting. |
| $f=P, 50 H, 80 D$ $f=F, 46 H, 70 D$ | HRI Position <br> $\mathrm{f}=0-\mathrm{Off}, \mathrm{f}=1$ - Top, $\mathrm{f}=2$ - Bottom, $\mathrm{f}=3$ - Both <br> HRI Font <br> $f=0$ Medium, $f=1$ Larger, $f-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.) |

## Code 16K Print Options

Function Code 16K Options
ASCII [ESC] [EM] 6 <f> <v>
Hexadecimal 1BH 19H 36H <f> <v>
Decimal <27> <25> <54><f> <v>
IPCL None
Description This command alters the way code16K barcodes are generated and printed.
Where $\quad f=$ Feature to control and $v=$ the value of the feature.
$f=W 57 H, 87 D \quad$ Set the minimum element width.
$v=1-10,3$ is the default.
A width of 1 may be unreadable.
It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode.
$\mathrm{f}=\mathrm{H}, 48 \mathrm{H}, 72 \mathrm{D} \quad$ Blank Space between the barcode and the HRI Default 8 I $\mathrm{f}=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D} \quad$ GS1 Mode. (See General description above) By default Databar barcodes use GS1 formatting.
$f=P, 50 \mathrm{H}, 80 \mathrm{D} \quad$ HRI Position
$\mathrm{f}=0-\mathrm{Off}, \mathrm{f}=1$ - Top, $\mathrm{f}=2$ - Bottom, $\mathrm{f}=3$ - Both
$f=F, 46 H, 70 D$
HRI Font
$\mathrm{f}=0$ Medium, $\mathrm{f}=1$ Larger, $\mathrm{f}-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.)

## QRCode Print Options

| Function | QRCode code control |
| :--- | :--- |
| ASCII | [ESC] [EM] $q<f><v>$ |
| Hexadecimal | 1BH $19 \mathrm{H} 71 \mathrm{H}<\mathrm{f}><\mathrm{v}>$ |
| Decimal | $<27><25><113><\mathrm{f}><\mathrm{v}>$ |
| IPCL | None |
| Description | This command alters the way QRCode barcodes are generated and |
|  | printed. <br> Where |
| $f=$ Feature to control and $v=$ the value of the feature. |  |

$f=W 57 H, 87 D \quad$ Set the minimum element width and height.
$v=1-10,4$ is the default.
A width of 1 may be unreadable.
It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode.
$f=E, 45 H, 69 D \quad$ QRCode Error Correction.
0-4 are accepted.
$0=$ Auto
1 = L or 7\%
2 = M or $15 \%$
3 = Q or $25 \%$
$4=\mathrm{H}$ or $30 \%$
$\mathrm{f}=\mathrm{H}, 48 \mathrm{H}, 72 \mathrm{D} \quad$ Blank Space between the barcode and the following data Default 8
$\mathrm{f}=\mathrm{M}, 4 \mathrm{DH}, 77 \mathrm{D} \quad$ QRCode Matrix Size. 0-40 are accepted. $0=$ Auto
$\mathrm{f}=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D}) \quad$ GS1 Mode. Default $=0$ (See General description above)
Note: If in GS1 mode, a FNC1 is added to the beginning of the symbol. GS1 data formatting and compaction are active and the input must follow the GS1 rules.
Note: QR Code Model 1 is obsolete, only Model 2 is supported
$\mathrm{f}=\mathrm{P}, 50 \mathrm{H}, 80 \mathrm{D} \quad$ HRI Position
$f=F, 46 H, 70 D \quad$ HRI Font
$\mathrm{f}=0$ Medium, $\mathrm{f}=1$ Larger, $\mathrm{f}-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.)

Note: It is possible to define a QR Barcode that is too large to fit in the printers limited print zone. If this happen, the barcode print functions will fault.
Note: The printer will attempt to print large QR barcodes with single dot elements. Single dot elements may have poor readability.

## Maxicode Print Options

| Function | Maxicode control |
| :--- | :--- |
| ASCII | $[E S C][E M] m<f><v>$ |
| Hexadecimal | $1 \mathrm{BH} 19 \mathrm{H} 6 \mathrm{DH}<\mathrm{f}><\mathrm{v}>$ |
| Decimal | $<27><25><109><\mathrm{f}><\mathrm{v}>$ |
| IPCL | None |
| Description | This command alters the way Maxicode barcodes are generated and <br>  <br> Where |
| printed. |  |
|  | $f=$ Feature to control and $v=$ the value of the feature. |

\(\left.$$
\begin{array}{ll}f=W 57 H, ~ 87 D ~ & \begin{array}{l}\text { Set Scale. The scale may be set from } 0 \text { to } 10 \text {, however, } \\
\text { only values of } 8,6,4, \text { and } 2 \text { will be used. (default is 4) } \\
\text { (0 will default to } 4 \text { and odd numbers will round down.) } \\
\text { A scale of } 2 \text { may be unreadable. } \\
\text { It the barcode will not fit in the print zone, the printer will } \\
\text { automatically reduce the scale until the barcode will fit. If } \\
\text { the barcode will not fit at a width of } 1 \text {, the printer will not }\end{array}
$$ <br>

print the barcode.\end{array}\right]\)| Blank Space between the barcode and the following data |
| :--- |
| Default 8 |

## Aztec Print Options

| Function | Aztec code control |
| :--- | :--- |
| ASCII | $[E S C][E M] a<f><v>$ |
| Hexadecimal | $1 \mathrm{BH} 19 \mathrm{H} 61 \mathrm{H}<\mathrm{f}><\mathrm{v}>$ |
| Decimal | $<27><25><97><\mathrm{f}><\mathrm{v}>$ |
| IPCL | None |
| Description | This command alters the way Aztec barcodes are generated and printed. |
| Where | $\mathrm{f}=$ Feature to control and $v=$ the value of the feature. |


| $f=W 57 \mathrm{H}, 87 \mathrm{D}$ | Set the minimum element width. $v=1-10,6$ is the default and height. A width of 1 may be unreadable. It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode. |
| :---: | :---: |
| $f=M, 4 D H, 77 D$ | QRCode Matrix Size. 1-36 are accepted. 0 - Auto Size 1-4 are Compact and 5-36 are normal. |
| $f=E, 45 H, 69 D$ | QRCode Error Correction. <br> 1-4 are accepted. $0=$ default to level 2 |
| $\mathrm{f}=\mathrm{H}, 48 \mathrm{H}, 72 \mathrm{D}$ | Blank Space between the barcode and the following data Default 8 |
| $\mathrm{f}=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D})$ | GS1 Mode. (See General description above) If in GS1 mode the symbol start with an FNC1 and that the compression is slightly altered. GS1 data formatting and compaction are active and the input must follow the GS1 rules. |
| $f=P, 50 H, 80 \mathrm{D}$ | HRI Position $\mathfrak{f}=0-\mathrm{Off}, \mathrm{f}=1-$ Top, $\mathrm{f}=2-$ Bottom, $\mathrm{f}=3$ - Both |
| $f=F, 46 \mathrm{H}, 70 \mathrm{D}$ | HRI Font $f=0$ Medium, $f=1$ Larger, $f-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.) |

Note: It is possible to define a Aztec Barcode that is too large to fit in the printers limited print zone. If this happen, the barcode print functions will fault.
Note: The printer will attempt to print large Aztec barcodes with single dot elements. Single dot elements may have poor readability.

## Code One Print Options

| Function | Code One code control |
| :--- | :--- |
| ASCII | [ESC] [EM] $1<\mathrm{f}><\mathrm{v}>$ |
| Hexadecimal | $1 \mathrm{BH} 19 \mathrm{H} 31 \mathrm{H}<\mathrm{ff}><\mathrm{v}>$ |
| Decimal | $<27><25><49><\mathrm{f}><\mathrm{v}>$ |
| IPCL | None |
| Description | This command alters the way Aztec barcodes are generated and printed. |
| Where | $\mathrm{f}=$ Feature to control and $v=$ the value of the feature. |

$f=W 57 H, 87 D \quad$ Set the minimum element width.
$v=1-10,6$ is the default and height.
A width of 1 may be unreadable.
It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode.
$f=M, 4 D H, 77 D \quad$ Code One Matrix Size. 1-10 are accepted. 0 - Auto Size 1-8 are 1A-1H and 9-10 allow other shapes.
$\mathrm{f}=\mathrm{H}, 48 \mathrm{H}, 72 \mathrm{D} \quad$ Blank Space between the barcode and the following data Default 8
$\mathrm{f}=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D}) \quad$ GS1 Mode. (See General description above)
If in GS1 mode the symbol start with an FNC1 and that the compression is slightly altered. GS1 data formatting and compaction are active and the input must follow the GS1 rules.
$\mathrm{f}=\mathrm{P}, 50 \mathrm{H}, 80 \mathrm{D} \quad$ HRI Position
$\mathrm{f}=0-\mathrm{Off}, \mathrm{f}=1$ - Top, $\mathrm{f}=2$ - Bottom, $\mathrm{f}=3$ - Both
$f=F, 46 H, 70 D \quad$ HRI Font
$f=0$ Medium, $f=1$ Larger, $f-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.)

## Databar (RSS) Print Options

| Function | Databar Options |
| :--- | :--- |
| ASCII | [ESC] [EM] $r<f><v>$ |
| Hexadecimal | $1 B H 19 H 72 H<f><v>$ |
| Decimal | $<27><25><114><f><v>$ |
| IPCL | None |
| Description | This command alters the way Databar barcodes are generated and <br> Where |
| printed. |  |
|  | $f=$ Feature to control and $v=$ the value of the feature. |

$f=W 57 H, 87 D \quad$ Set the minimum element width. $v=1-10,3$ is the default.
A width of 1 may be unreadable.
It the barcode will not fit in the print zone, the printer will automatically reduce the width until the barcode will fit. If the barcode will not fit at a width of 1 , the printer will not print the barcode.
$f=S, 53 H, 83 D \quad$ Expanded Stack character segment width.
$v=2-10$ Default 3
$\mathrm{f}=\mathrm{K}, 4 \mathrm{BH}, 75 \mathrm{D} \quad$ Activate Stacked symbol HRI. $0=\mathrm{off}, 1=\mathrm{on}$.
By convention stacked barcode are not printed with HRI, however if required they may be activated
$f=\mathrm{G}, 47 \mathrm{H}, 71 \mathrm{D} \quad$ GS1 Mode. Default $=0 \times 19$
(See General description above)
By default Databar barcodes use GS1 formatting.
$f=P, 50 H, 80 D \quad$ HRI Position
$\mathrm{f}=0-$ Off, $\mathrm{f}=1$ - Top, $\mathrm{f}=2$ - Bottom, $\mathrm{f}=3$ - Both
$f=F, 46 H, 70 D \quad$ HRI Font
$f=0$ Medium, $f=1$ Larger, $f-2$ Smaller (Note: Fonts may be redefined by using the change legacy font command.)

Note: If RSS stacked barcodes don't generally use HRI. The [ESC] [EM] bP and [ESC] [EM] bK will turn on HRI for non stacked RSS barcodes. However, the [ESC] [EM] rP and [ESC] [EM] rK may be used to turn on the stacked barcode HRI.

Composite Barcode Print Options


Note : The normal HRI options do not affect Composite barcodes. Composite barcode HRI may be on or off and you may select the font. HRI is only available below barcode.

## Legacy Commands

| Function | Set bar code height |
| :--- | :--- |
| ASCII | $[E S C][E M] B<n>$ |

Hexadecimal 1BH 19H 42H <n>
Decimal <27> <25> <66> <n>
IPCL \&\%BH <m>
Description The [ESC] [EM] B <n> command sets the bar code height where <n>*24
are the number dots. The default is $\mathrm{n}=4$, and results in a barcode that is
about 0.47 inches high.
Function Set bar code width
ASCII [ESC] [EM] W <n>
Hexadecimal 1BH 19H 57H <n>
Decimal <27> <25> <87> <n>
IPCL \&\%BW <m>
Description The [ESC] [EM] w <n> command sets the minimum bar width. The value
may be between 1 and 8 . The default is 3 .

Note: A value of 1 may result in barcodes that are unreadable with some readers.

An alternate version of this command is available for Interleaved 2 of 5 barcodes. Interleave 2 of 5sometimes require that the bar ratios be altered for unconventional barcode readers.

ASCII [ESC] [EM] W <0><narrow><wide>
Hexadecimal 1BH 19H 57H <0><narrow><wide>
Decimal <27> <25> <87> <0><narrow><wide>
Description The [ESC] [EM] w <0><narrow><wide> only affects the 2 of 5 barcode and sets the narrow bar width to <narrow> dots and the wide bar width to <wide> dots. If this command is used, the scale is set to 1 and the narrow and wide setting provides the scale. No error checking is performed when setting these values and invalid barcodes can be generated.

| Function | Set bar code justification, human readable interpretation (HRI) character print mode, and print direction |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ASCII | [ESC] [EM] J <n> |  |  |  |
| Hexadecimal | 1BH 19H 4AH <n> |  |  |  |
| Decimal | <27> <25> <74> <n> |  |  |  |
| IPCL | \&\%BJ < $\mathrm{m}_{1}><\mathrm{m}_{2}>$ |  |  |  |
| EPOS | none |  |  |  |
| The power on default is center justified with HRI characters not printed. |  |  |  |  |
| Description | The [ESC] [EM] J <n> command selects the operation of the bar code justification, HRI characters, and print direction. |  |  |  |
| Where n bits | n | n IPC | 76543210 |  |
|  |  |  | -xx | Justified |
|  | 0 | 00 | ------00 | Left |
|  | 1 | 01 | ------01 | Center |
|  | 2 | 02 | ------10 | Right |
|  |  |  | -xx | HRI characters |
|  | 0 | 00 | --00---- | Not printed |
|  | 16 | 16 | --01---- | Printed above the bar code |
|  | 32 | 32 | --10---- | Printed below the bar code |
|  | 48 | 48 | --11---- | Printed above and below the bar code |
|  |  |  |  | Vertical print mode. (Page mode may work better) |
|  | 0 | 00 | -0------ | Bar code printed in horizontal |
|  | 64 | 64 | -100---- | Bar code printed in vertical direction |

Note 1: The [ESC] [EM] J <n> command only affects bar code printing. Note 2: HRI is not available in vertical print mode. You may print normal barcodes in page mode, which will provide for HRI as well as significantly longer barcodes.

## Identifying Barcode Processing Errors

Barcodes that are not entered correctly in most cases will not print. It can be difficult at times to identify why. To help identify the problem there is a command that will return the last barcode error in the form of a 16 bit error ID.

ASCII
Hexadecimal
Decimal

ENQ < $37>$
525 H
537

Will return: ACK <37> <42> <Error T-0 $><$ Error $_{15-8}>$
Or $\quad 05 \mathrm{H} 25 \mathrm{H} 2 \mathrm{AH}<$ Error $_{7-0}><$ Error $_{15-8}>$
Where the error codes are as follows:

| Error Type | Error ID | Description |
| :---: | :---: | :---: |
| Warnings | 1 | Invalid option, default used |
|  | 2 | Invalid barcode Command |
|  | 3 | Unable to process the barcode command |
| General Errors | 10 | Too much barcode data. |
|  | 11 | Not enough barcode data |
|  | 12 | Too much Addenda data |
|  | 13 | Invalid bar code data |
|  | 14 | Invalid check digit |
|  | 15 | Invalid option |
|  | 17 | Barcode encoding problem |
|  | 18 | Barcode won't fit in the print zone. |
| System Errors ${ }^{26}$ <br> Not recoverable | 90 | This barcode is not active in this code. |
|  | 91 | HRI Text field pointer is not valid |
|  | 98 | Unknown Internal ID |
|  | 99 | Memory allocation error |
| Aztec | 100 | Input too long or too many extended ASCII characters |
|  | 101 | Invalid error correction level - using default instead |
|  | 102 | Invalid Aztec Code size |
|  | 103 | Input too large |
|  | 104 | Not used |
|  | 105 | Aztec Invalid character (NULL) in input data |
| Data Matrix | 200 | Invalid characters in data |
|  | 201 | Input wrong length |
|  | 202 | Invalid PZN Data |
|  | 203 | Value out of range |
|  | 300 | Data too long to fit in symbol |
|  | 301 | Data does not fit in selected symbol size |
|  | 210 | Not Used |
|  | 211 | Invalid symbol size |
|  | 212 | Unable to fit data in specified symbol size |
| GS-1 Data Errors | 400 | Extended ASCII characters are not supported by GS1 |
|  | 401 | Control characters are not supported by GS1 |

${ }^{26}$ System Errors are internal printer errors that should not occur. If error codes between 90 and 99 occur, contact customer support.

|  | 402 | Data does not start with an AI |
| :---: | :---: | :---: |
|  | 403 | Malformed Al in input data (brackets don't match) |
|  | 404 | Found nested brackets in input data |
|  | 405 | Invalid AI in input data (AI too long) |
|  | 406 | Invalid AI in input data (Al too short) |
|  | 407 | Invalid AI in input data (non-numeric characters in Al ) |
|  | 408 | Invalid data length for AI |
|  | 409 | Invalid AI value |
|  | 410 | Invalid Check Digit Calculation Field Length |
|  | 411 | Invalid Check Digit Calculation Field Data |
|  | 412 | Too many Al's to handle (25 Max) |
| Maxicode | 500 | Invalid Mode |
|  | 501 | Invalid Secondary String |
|  | 502 | Invalid option |
|  | 503 | Invalid Country code field |
|  | 504 | Invalid Service code field |
|  | 505 | Requires Postal, Service and Country |
|  | 506 | Requires Postal, Service and Country |
| PDF 417 | 600 | Security value out of range |
|  | 601 | Number of columns out of range |
|  | 603 | Number of code words per row too small |
|  | 604 | Data too long for specified number of columns |
|  | 605 | Internal index out of range |
|  | 606 | Specified width out of range |
|  | 607 | Specified symbol size too small for data |
| UPC | 700 | Invalid UPC-E data |
|  | 701 | Invalid ISBN |
|  | 702 | Incorrect ISBN check |
|  | 703 | UPC A input wrong length |
|  | 704 | UPC E input wrong length |
| Composite | 800 | Invalid AI 90 data |
|  | 801 | 2D component input data too long |
|  | 802 | No message in 2D composite |
|  | 803 | CC-C only valid with GS1-128 linear component |
|  | 804 | EANX portion is invalid |

## Miscellaneous Printer Control

[ESC] 8 Disable paper out sensor
ASCII [ESC] 8
Hexadecimal 1BH 38H
Decimal <27> <56>
IPCL \&\%PF
EPOS none
Description The [ESC] 8 command temporally disables the paper out sensor. The printer does not stop printing or go off-line when it senses it is out of paper. The inquire commands still return paper out status.
[ESC] 9 Enable paper out sensor
ASCII [ESC] 9

Hexadecimal 1BH 39H
Decimal <27> <57>
IPCL \&\%PO
EPOS none
Description The [ESC] 9 command enables paper sensing and is intended to reverse the effect of the disable paper out sensor command. If the printer is out of paper when the command is issued, it goes off-line.

## [ESC] X Set left/right print margins

ASCII $\quad[E S C] X<n_{1}><n_{2}>$
Hexadecimal 1BH $58 \mathrm{H}\left\langle\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle$
Decimal <27> <88> <n $n_{1}><n_{2}>$
IPCL none
EPOS [ESC]I,[ESC] Q
Description The [ESC] $\left.X<n_{1}\right\rangle<n_{2}>$ command sets left and right print margins in characters from the home position. Where $\mathrm{n}_{1}=$ left margin and $\mathrm{n}_{2}=$ right margin, the absolute position depends on the current print pitch. If the left and right margins are set to the right of the current horizontal position, the new margins become valid in the same line. If the left margin is set to the left of the current horizontal position and the right margin set to the right of the current horizontal position, the right margin setting becomes valid in the same line, but the left margin setting becomes valid in the next line. When the left and right margins are set to the left of the current horizontal position, both left and right margin settings appear to become valid in the next line because an auto-CR is performed by the subsequent data.
[CAN] Clear print buffer
ASCII [CAN]
Hexadecimal 18H
Decimal <24>
IPCL \&\%RP
EPOS [CAN]
Description The [CAN] command clears the print buffer and any unprinted information in the printer received before it. If the input buffer is not being processed because the printer is out of paper or a form is not inserted, the [CAN] command will not be processed until after the error is cleared. The [CAN] command does not restore default conditions; it only clears the print buffer.

## [ESC] q Query marker

| ASCII | $[E S C] q<n>$ |
| :--- | :--- |
| Hexadecimal | $1 B H 71 H<n>$ |
| Decimal | $<27><113><n>$ |
| IPCL | none |
| EPOS | none |

Description The [ESC] q <n> command returns a status to the host when it is processed.
Response $[\mathrm{SOH}]$ <n>
The [ESC] q <n> command may be placed in the print data and, when processed by the printer, will return a progress status marker. The value of $<\mathrm{n}>$ can be any 8 -bit value. It is returned to the host unaltered. The intent is for it to be a sequence number. The command can be used to track the print progress of the printer or verify that data has been printed.

Note: The [ESC] q <n> command is a line terminator that causes the printer to print all previous data. If a normal line terminator like a [CR] is not supplied, right justify and auto-center do not function correctly. All data is left justified. [ESC] q does not perform a [CR] or [LF] function.
[ESC] x Open cash drawer

| ASCII | [ESC] $x<n>$ |
| :--- | :--- |
| Hexadecimal | $1 B H 78 H<n>$ |
| Decimal | $<27><120><n>$ |
| IPCL | \&\%D1 (Cash Drawer 1) |
|  | \&\%D2 (Cash Drawer 2) |
| EPOS | [ESC] p |

Description The [ESC] $\mathrm{x}<\mathrm{n}>$ command charges the cash drawer, $<\mathrm{n}>$, for 150 ms .
Where <n> = <1> (01H) or $1(31 \mathrm{H})$ for Cash Drawer 1
$<2>(02 \mathrm{H})$ or $2(32 \mathrm{H})$ for Cash Drawer 2
The time period that drawer is activated can be changed in the configuration menu. Activation time ranges from 25 mS to 250 mS .

Note 1: Cash drawer open commands are processed as part of print data. They are not immediate commands and are not processed until found in the input buffer by the print processor.
Note 2: Cash Drawer 2 is factory configurable in one of two modes. Either pin 2 or 3 is active depending on an internal jumper setting. The factory default is pin 3. Cash Drawer 1 is always on pin 2. The cash drawer status is defined as an open circuit for drawer closed.
[ESC] v Perform Auto Cut
ASCII [ESC] v
Hexadecimal 1BH 76H <n>
Decimal <27><118>
IPCL \&\%FC \&\%PC
EPOS [ESC]ior[ESC] m
Description The [ESC] v command operated the auto cutter.


Note: The auto cutter is optional. If the auto cutter is not installed this command will be ignored.
[ESC] @ Initialize the printer
ASCII
[ESC] @
Hexadecimal 1 BH 40 H
Decimal <27> <64>
Description The [ESC] @ command initializes the printer. All settings, including character font and line spacing, are canceled.
[BEL] Audio alert
ASCII [BEL]
Hexadecimal 07H
Decimal <7>
IPCL \&\%BL
EPOS [BEL]
Description When enabled, the [BEL] command starts the audio alert sequence. The default is a single sound, lasting the period of time defined by the audio alert setting. If the audio alert is off, it does not function.
[ESC] [BEL] Configure audio alert
ASCII [ESC][BEL] $\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle\left\langle n_{3}\right\rangle$
Hexadecimal 1BH 07H $\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle\left\langle n_{3}\right\rangle$
Decimal <27> <7> <n $><n_{2}><n_{3}>$
IPCL None
EPOS None
Description The [ESC] [BEL] $\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle\left\langle n_{3}\right\rangle$ command alters the way the audio alert sounds.
The default is a single sound lasting the period of time defined by the audio alert setting.
The [ESC] [BEL] $\left.\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle<n_{3}\right\rangle$ command allows the sound to be altered.
Where <n1> is the number of alert cycles
<n2> is the on time of the alert cycle in ten Ms intervals
<n3> is the off time of the alert cycle in ten Ms intervals
[ESC] p $5 \quad$ Enable/disable paper feed
ASCII [ESC]p 5 <n>

| Hexadecimal | $1 \mathrm{BH} 70 \mathrm{H} 35 \mathrm{H}<\mathrm{n}>$ |
| :--- | :--- |
| Decimal | $<27><112><53><\mathrm{n}>$ |
| Range | $0 \leq \mathrm{n} \leq 255$ |

Description The [ESC] p $5<n>$ command enables or disables the FEED button. When the least significant bit (LSB) of <n> = one, the FEED button is disabled; when it is zero, the button is enabled. To prevent problems caused by accidentally pressing the FEED button, use the command to disable it. The FEED button is temporarily enabled, regardless of how the command is set during the wait time set by the [GS] z 0 command for paper insertion and during the recovery confirmation time.
Where <n> Bit $0=1$ the FEED button is disabled Bit $0=0$ the button is enabled.
[ESC] p 4 Select paper sensor(s) to stop printing
ASCII [ESC]p 4 <n>
Hexadecimal 1BH 70H 34H <n>
Decimal <27> <112> <52> <n>
Range $\quad 0 \leq \mathrm{n} \leq 255$
Description The [ESC] p $4<n>$ command selects the sensors that tell the printer to stop printing. The default setting occurs when only the Paper Out sensor stops printing. When the paper roll near-end sensor is enabled and the sensor detects a near-end condition during printing, the printer completes the current line and then automatically goes off-line. Replacing a new paper roll restarts the printing. When the paper roll near-end sensor is disabled and a paper near-end condition is detected during printing, the paper out LED comes on, but the printer continues to print.

Note: The FST does not allow the Paper Out sensor to be disabled. It is always on.
$<\mathrm{n}>$ is defined as follows:

| Bit | On/Off | Hexadecimal | Decimal | Function |
| :--- | :--- | :--- | :--- | :--- |
|  | Off | 00 H | $\langle 0>$ | Paper roll near-end sensor disabled |
|  | On | $01 \mathrm{H}, 02 \mathrm{H}, 03 \mathrm{H}$ | $\langle 1>,<2>,<3>$ | Paper roll near-end sensor enabled |
| 7 | - | 00 H | $\langle 0\rangle$ | Undefined |

Table 26 Paper Sensor stop printing Commands
[ESC] p 3 Select paper sensor(s) to output paper-end signals
ASCII [ESC] p $3<n>$
Hexadecimal 1BH 70H 33H <n>
Decimal <27> <112> <51> <n>
Range $\quad 0 \leq \mathrm{n} \leq 255$
Description The [ESC] p $3<n>$ command selects the paper sensor that outputs a paper-end signal to the parallel interface when a paper-end is detected. The default setting is when all sensors are enabled. ( $<n>=15$ ). It is possible to select multiple sensors to output signals. If any of the sensors detect a paper end, the paper end signal is output. The command is only available with a parallel interface. The paper-end sensor is an option. If the sensor is not equipped, the settings of bits 0 and 1 of the command are not effective.

| Bit | On/Off | Hexadecimal | Decimal | Function |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Off | 00H | <0> | Paper roll near-end sensor disabled |
|  | On | 01H | <1> | Paper roll near-end sensor enabled |
| 1 | Off | 00H | <0> | Paper roll near-end sensor disabled |
|  | On | 02H | <2> | Paper roll near-end sensor enabled |
| 2 | Off | 00H | <0> | Paper roll end sensor disabled |
|  | On | 04H | <4> | Paper roll end sensor enabled |
| 3 | Off | 00H | <0> | Paper roll end sensor disabled |
|  | On | 08H | <8> | Paper roll end sensor enabled |
| 4-7 | - | - | - | Undefined |

Table 27 Paper Sensor out of paper Commands
[ESC] < Enable print suppress and data pass through
ASCII [ESC] \lln>
Hexadecimal 1BH 3CH <n>
Decimal <27> <60> <n>
IPCL \&\%PT <n>
EPOS $[E S C]=<n>$
Description The [ESC] \lln> command provides print suppress and data pass through features.
Where
Bit $0 \quad$ Printer select
Bit 1 Pass through On
Bits 2-7 Undefined
If Bit 0 is clear, the printer stops processing data. If Bit 1 is set, the data is passed through the printer and sent out on the serial port.


Note 1: The pass through command is preprocessed. It is processed as soon as it is received. The printer may continue to print while previously received data is processed. The printer must be on-line and ready to activate the command.
Note 2: Pass through should only be used with serial printers. If the printer is configured for parallel operation, the data is still pass through on the IEEE 1284 port. In most cases this is not useful.
Note 3: When Ithaca ${ }^{\circledR}$ Series 50 Printer compatibility is being used, these commands do not function. Series 50 Printer pass through must be used. Note 4: Multi-drop is not operational during suppress and pass through. If a multi-drop address is present in the pass through data, it is not processed.
[SOH] Begin multi-drop control
ASCII $\quad[\mathrm{SOH}]<n>$
Hexadecimal 01H <n>
Decimal <1> <n>
IPCL none
Where <n> is the printer address. Addresses of A, B, or C are configurable.
Description The printer must be addressed in multi-drop mode. [SOH] <n> is the addressing command. If the printer is configured with an address of ' $A$,' it operates when addressed. When any other address is sent to the printer, it enters print suppress mode. An address of ' $Z$ ' is $n$ universal address that activates the printer.
[ESC] y Set control feature commands
ASCII [ESC] y <n>

Hexadecimal $1 \mathrm{BH} 79 \mathrm{H}<\mathrm{n}>$
Decimal <27> <121> <n>
IPCL $\quad \& \% \mathrm{YO}-9$ or $\left.\& \% \mathrm{YX}<\mathrm{m}_{1}><\mathrm{m}_{2}\right\rangle<m_{3}>$ (for numbers greater than nine)
EPOS $[E S C]$ y $<n>$
Where $\mathbf{n} 0 \quad$ Reinitializes the printer and forces Citizen mode
1 Reinitializes the printer and forces Star mode
2 Reinitializes the printer and forces Model 9000 mode
3 Reinitializes the printer and forces extended EPOS mode
4 Disables IPCL commands
5 Enables IPCL commands
6 Disables inquire processing (All preprocessing is disabled.)
$7 \quad$ Enables inquire processing
8 Enables extended diagnostics
9 Print Current Configuration
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Print Current totals
16 Not used
17 Requests the printer to enter remote Standby. (See page 284)
18 Requests the printer to exit remote Standby.
20 Print alignment settings
21 Force Off Line Mode to Normal operation
22 Force Off Line Mode to Buffer full only.
34 Reinitializes the printer and forces Model 50 mode
35 Reinitializes the printer and forces Microline mode
48 Force Microline status to False
49 Force Microline status to True
78 Reset all character attributes to disabled
87 Force the printer into Windows mode. (203x203 and No Wrap)

Description The [ESC] y <n> command enables and disables command set features. It is possible that the IPCL commands will interfere with print data. If this occurs, the IPCL can be disabled with an [ESC] y $<4>$ command.

Note 1: Once IPCL commands are disabled, the Enable IPLC command will not be a valid IPCL code.
Note 2: [ESC] y <0>, <1>, <2>, <3>, <34> and <35> allow the printer to switch between emulation modes. When the switch takes place, the current print buffer is printed, and the printer reinitializes. These commands do not permanently change the configuration. A power on reset restores the mode that was configured in menu mode. A reset by command or from the INIT pin does not restore the mode.
Note 3: [ESC] y <6> and <7> enable and disable the inquire process. These commands are not processed as they are received, but are buffered then processed. The buffering process allows inquire commands sent after a disable to be answered. In addition, inquires sent after an enable may not be answered. (See additional notes 3 and 4 on the next page).
Note 5: In EPOS mode, the [ESC] y command is active.

## USB Recovery Watch Dog

The USB link can be susceptible to various errors that can cause it to stop functioning. This typically happens when noise is introduced into the cable resulting in a buffer overrun at the host. This can cause a hub or a USB driver to suspend interaction with whatever device appeared to be the source of the problem. When this happens, the only way to recover the link is to disconnect from the device and then reconnect. This is typically done in the host. In some cases for various reasons, the host driver is not able to generate a disconnect.

It is possible to have the printer force the disconnect, however, the host application must start the service and then continue to extend the disconnect watch dog.

There is one command and two status indicators to help the application keep track of the watch dog.

When activated the printer will schedule a USB disconnect/reconnect after the specified time unless the command is sent the command again before the time expires to either extend the time or disable the timer.
[ESC][CAN] <n>
Activate USB Watch Dog

ASCII [ESC][CAN] <n>
Hexadecimal 1BH 18H
Decimal <27> <24>
Function The [ESC][CAN]<n> command schedules a USB disconnect reconnect cycle after n seconds. The scheduled disconnect can be canceled by issuing [ESC][CAN]<0>.

## Where

$\mathbf{n}=\mathbf{0} \quad$ disable any scheduled disconnect.
$\mathbf{n}=\mathbf{1 - 2 5 5} \quad$ Scheduled a disconnect/reconnect after n seconds from when the command is received.

If the disconnect occurs as a result of this command. The printer will reset the USB controller which appears to the host as a disconnect. (Effectively, the host will think the printer is off) The USB controller will be held in reset for 250 milliseconds. When the reset is removed, the USB controller will restart and a normal enumeration process will start. The printer will report not ready and not accept data for another 500 milliseconds. This will allow time for the USB driver to reload and initialize. The printer will then report ready and allow normal data flow.

NOTE: This process does not actually affect the state of the print process. Any print commands previously sent to the printer will still be active.

To keep track of the watch dog status, the fact that a watch dog occurred is reported as part of the ENQ 20 status command. The total number of disconnects will be reported and reset by the ENQ 35 enquire command.

Note that the ENQ 35 command will reset the count and will also reset the status reported by ENQ 20. ENQ 20 does not reset the count. It simply reports that a reset occurred.

To keep track of how often this process is being used there is a printer statistics log entry that will be incremented when a USB watch dog disconnect actually occurs. This can be printed or reported to the host. Note: This total is not reset by the ENQ 35 command.
[ENQ] <35> Inquire USB Watch Dog Resets.
ASCII [ENQ]<35>
Hexadecimal 05 H 23 H
Decimal <5> <35>
Function The [ENQ] <35> command returns the number of USB Watch dog resets and then resets the count to zero.
Response $[A C K]<35><41><n>$
Where
<35> Is the echo of command
<41> Length +40
<n> $\quad$ The number of USB Watchdogs since the last inquire.

## Printer Status

## Status Inquire

The Model 9000 Printer is designed for use as part of an automated system where the host computer makes every attempt to correct problems with the printer. In addition, the host application requires that it be able to obtain more information from the printer than is typical of normal computer printers. For example, a normal computer printer does not have cash drawers, such additional features require that the standard printer protocol be extended to deal with the added features of a point-of-sale (POS) printer.

All inquire commands are processed as they are received (preprocessed or real time) and require a response from the printer. Consequently, parallel, IEEE 1284 bidirectional communications, USB or bidirectional serial operation is required.

The Model 9000 Printer looks at and evaluates all commands as they are received, and does not respond to inquire commands that happen to be embedded in graphics or other commands. (Refer to the buffer and preprocessor descriptions in later sections.)

In all cases, inquire commands are responded to by an acknowledged (ACK) or a not acknowledged (NAK) and then the command ID, which allows the host application to make multiple requests and receive identifiable responses. If the printer is configured for serial or USB operation the status is automatically returned to the host. If the printer is configured for parallel, IEEE 1284 operation, the HOST must initiate a reverse channel request to return the status.

## Serial and USB Mode Inquire

All inquire (ENQ) commands require a response from the printer. During serial operation, all inquire commands are responded to by an acknowledged (ACK) or not acknowledged (NAK), the command ID, and in some cases status. Most status responses sequences contain a length field to help decode and separate responses.

In general the printer should be configured for "Buffer Full Only" off-line operation if inquire commands are used. This prevents the printer from using flow control for anything but buffer full. The programmer must take on the responsibility for assuring that inquire commands are used to maintain status of the printer.

The printer always accepts serial data even when it is off-line. The printer has reserve buffer space that allows additional information to be received even if the printer is signaling buffer full or off-line. Because inquire commands are processed before they go into the buffer, the printer responds even when it is busy printing.

In serial mode, the response to an inquiry should be received by the host before another inquire command is issued to the printer. When the printer receives an inquiry, it generates a response. If inquiries are sent to the printer too quickly, the printer spends all of its time responding and does not have time to print.

## IEEE 1284 Mode Inquire

In parallel, IEEE 1284 mode, status information can be returned to the host through the IEEE 1284 reverse channel. After the host makes an inquire request, it activates IEEE 1284 mode 0 reverse channel and waits for a response from the printer. The response to the inquire is identical to serial mode in format.

The printer always accepts IEEE 1284 reverse-channel requests but does not accept inquire commands when off-line. It is possible to obtain status when off-line by placing the printer in dynamic response mode before the printer goes off-line. The IEEE 1284 reverse channel responds to status changes even when the printer is off-line.

In general, the printer should be configured for "Buffer Full Only" off-line operation if inquire commands are used. This prevents the printer from using flow control for anything but buffer full. The programmer must take on the responsibility for assuring that inquire commands are used to maintain status of the printer.

## Inquire Commands

## [ENQ] Inquire printer status

ASCII [ENQ] <n>
Hexadecimal 05H <n>
Decimal <5> <n>
IPCL none
EPOS [GS] r or [DLE] [ENQ] or [DLE] [EOT]
Description The $[E N Q]$ <n> command inquires about the printer's status and returns a result.

Note: When the printer is off-line, inquires may not be accepted.
[ENQ] <1> Inquire Cash Drawer 1 status

| ASCII | $[E N Q]<1>$ |
| :--- | :--- |
| Hexadecimal | 05 H 01 H |
| Decimal | $<5><1>$ |
| Function | Cash Drawer 1 Status |
| Response | ACK $<1>(06 \mathrm{H} 01 \mathrm{H})$ |
|  | NAK $<1>(15 \mathrm{H} 01 \mathrm{H})$ |
|  | Cash Drawer 1 is closed. |
|  | Cash drawer status is defined as oper circuit being drawer closed. |

[ENQ] <3> Inquire receipt paper low status
ASCII [ENQ] <3>
Hexadecimal 05H 03H
Decimal <5> <3>
Function Receipt paper low
Response ACK $<3>(06 \mathrm{H} 03 \mathrm{H})$ Receipt paper is present.
NAK $<3>(15 \mathrm{H} 03 \mathrm{H})$ Receipt paper is low.

## [ENQ] <4> Inquire receipt paper out status

| ASCII | $[E N Q]<4>$ |
| :--- | :--- |
| Hexadecimal | 05 H 04 H |
| Decimal | $<5><4>$ |
| Function | Receipt paper exhausted |
| Response | ACK $<4>(06 \mathrm{H} 04 \mathrm{H})$ |
|  | RAK $<4>(15 \mathrm{H} 04 \mathrm{H}) \quad$ Receipt paper is present |
|  | Naper is exhausted |

[ENQ] <8> Inquire cover open status

| ASCII | $[E N Q]<8>$ |
| :--- | :--- |
| Hexadecimal | 05 H 08 H |
| Decimal | $<5><8>$ |
| Function | Cover open/closed status |
| Response | ACK <8> (06H 08H) |
|  | NAK $<8>(15 \mathrm{H} 08 \mathrm{H}) \quad$ The cover is closed |
|  | Nis open |

[ENQ] <9> Is the buffer empty? Clear the IEEE 1284 buffer.
ASCII [ENQ] <9>
Hexadecimal 05H 09H
Decimal <5> <9>
Function The [ENQ] <9> command allows the host to know when the print buffer is empty. If IEEE 1284 is active, the command also clears the response buffer.
Response $A C K<9>(06 \mathrm{H} 09 \mathrm{H})$ The buffer is empty.
NAK $<9>(15 \mathrm{H} 09 \mathrm{H})$ The buffer is not empty.
[ENQ] <10> Request printer reset
ASCII [ENQ]<10>
Hexadecimal 05H 0AH
Decimal <5> <10>
Function Reset printer
Response Serial Parallel
ACK <10> (06H 0AH) No response
The command was accepted.
NAK <10> (15H 0AH)
The command was rejected.
Description The ENQ <10>, EPOS DLE ENQ <n> commands and the INIT pin all have the same effect and are referred to as reset commands. To prevent data loss, the printer tries to finish printing the buffered data. When operator intervention with the printer is required for any reason, data loss results. The reset operation is saved until the printer goes idle.

When the printer processes a reset command, the printer goes off-line and/or busy until the reset completes.

In serial mode, the printer may have information in its high-speed buffer that was received after the reset command but before the reset was processed. If the host
application continues to send information to the printer after a reset command, some of that information may be processed before the reset is processed.

In parallel mode, the printer goes busy after the reset is received but before the next byte is accepted. It will not accept any additional data until after the reset is processed.

In USB mode the USB link is not affected by the reset. Any data sent to the printer after the reset and before the printer completes the reset may be lost however the USB link will acknowledge all packets.

Note: If reset inhibit is set in the configuration menu, this command is ignored.
[ENQ] <11> Inquire power cycle status

| ASCII | [ENQ] < 11> |
| :---: | :---: |
| Hexadecimal | 05H 0BH |
| Decimal | <5> <11> |
| Function | Has the printer been power cycled since the last request? |
| Response | ACK <11> (06H 0BH) |
|  | Printer has been power cycled since the last [ENQ] <11> |
|  | NAK <5> (15H 0BH) |
|  | Printer has not power cycled since the last [ENQ] <11> |
| Description | The first time after a reset, the command returns [ACK] <11>, after that the command returns $[\mathrm{NAK}]<11>$. The command allows the application to determine if the printer has been power cycled and needs to be reinitialized. The [ENQ] <10> command and the INIT signal on the parallel port both cause the printer to return power up status. |

[ENQ] <14> Inquire Mechanical error status
ASCII [ENQ]<14>
Hexadecimal 05 H 0 EH
Decimal <5> <14>
Function Error status
Response
ACK <14> (06H 0EH) No mechanical errors
NAK <14> (15H 0EH) Mechanical error has occurred (Use [ENQ]<22> to identify the error)
Note: For this status request to function, the "Buffer Full Only" off-line option should be selected.

| [ENQ] <15> | Inquire printer state |
| :---: | :---: |
| ASCII | [ENQ] <15> |
| Hexadecimal | 05H 11H |
| Decimal | <5> <15> |
| Function | The [ENQ] <15> command returns the current printer state |
| Note | [ENQ] <17> also returns the current printer state, but it should not be used as it conflicts with XON/XOFF flow control. |
| Response | [ACK] < $\left.15><n><r_{1}\right\rangle\left\langle r_{2}>\ldots\right.$ |
| Where <n> | $<15>$ is the echo of the command ID. is the number of return bytes $+40(28 \mathrm{H})$ (to prevent confusion with XON/XOFF). |
| < $\mathbf{r}_{1}$ > | bit $0=1$ always <br> bit $1=$ Cover is closed. <br> bit $2=$ Receipt paper is out. <br> bit $3=0$ <br> bit $4=$ Printer is waiting in an error mode. Use $[E N Q]<22>$ to identify the specific error and $[E N Q]<10>$ to recover <br> bit $5=0$ |
|  | bit $6=1$ always <br> bit $7=0$ always |
| $<\mathrm{r}_{2}>$ : | bit $0-5=0$ always bit $6=1$ always bit $7=0$ always |

Note: For this status request to function, the "Buffer Full Only" off-line option should be selected.
[ENQ] <20> Inquire all printer status

| ASCII | [ENQ] <20> |
| :---: | :---: |
| Hexadecimal | 05H 14H |
| Decimal | <5> <20> |
| Function | The [ENQ] <20> command returns all status flags |
| Response | [ACK] < 20> <n> <r ${ }_{1}><\mathrm{r}_{2}>\ldots$ |
| Where | $<20\rangle$ is the echo of command ID. |
| <n> | is the number of return bytes +40 |
|  | $(28 \mathrm{H})$ (to prevent confusion with XON/XOFF). |
| < $\mathrm{r}_{1}$ >: | bit $0=$ Cash Drawer 1 is open. |
|  | bit $1=$ Cash Drawer 2 is open |
|  | bit $2=$ Receipt paper is out. |
|  | bit $3=0$ |
|  | bit $4=$ Receipt paper error occurred. (low or out) |
|  | bit $5=0$ |
|  | bit $6=1$ always |
|  | bit $7=0$ always |
| $<\mathrm{r}_{2}>$ : | bit $0=1$ always |
|  | bit $1=$ Cover is closed. |
|  | bit $2=$ Buffer is empty. |
|  | bit $3=$ Printer has been power cycled, |
|  | Reading this does not affect the state of the power-cycled flag. (Use [ENQ] <11> to reset the power cycled bit.) |
|  | bit $4=$ Printer is waiting in an error mode. Use $[E N Q]<22>$ to identify the specific error and $[E N Q]<10>$ to recover $\text { bit } 5=0$ |
|  | bit $6=1$ always |
|  | bit $7=0$ always |
| < $\mathbf{r}_{3}$ > | bit $0=1$ always (Receipt Station) |
|  | bit $1=0$ |
|  | bit $2=0$ |
|  | bit $3=0$ |
|  | bit $4=$ Undefined |
|  | bit $5=$ Printer is blocking print (Cover is open or out of paper.) |
|  | bit $6=1$ always |
|  | bit $7=0$ always |
| < $\mathbf{r}_{4}$ > | bit $0=$ Printer supports receipts. |
|  | bit $1=$ Printer supports inserted forms. |
|  | bit $2=$ Printer supports multiple colors |
|  | bit 3 = Printer supports cutter. |
|  | bit $4=$ Printer supports partial cuts. |
|  | bit $5=0$ |
|  | bit $6=1$ always |
|  | bit $7=0$ always |
| $<\mathrm{r}_{5}>$ : | Percentage of ink remaining on Head $1(0-100)+40(28 \mathrm{H})$ |
| $<\mathrm{r}_{6}>$ : | Percentage of ink remaining on Head $2(0-100)+40(28 \mathrm{H})$ |
| $<\mathrm{r}_{7}>$ : | Current multi-head alignment (0-16, $8=0$ offset) |

[ENQ] <21> Inquire printer ID
ASCII [ENQ]<21>
Hexadecimal 05H 15H
Decimal <5> <21>
Function The $[E N Q]<21>$ command returns the printer IEEE 1284 ID string.
Response $\quad[A C K]<21><n>\{I D$ string \}
Where $\mathbf{~ < 2 1 >}$ is the echo of the command ID and <n> is the number of return bytes in the ID string \{ID string\} is the IEEE ID return string, which follows:

MFG:TransAct.;
CMD:M9000CL,IPCL;
CLS:PRINTER;
MDL:M9000 PcOS;
DES:Ithaca-M9000;
REV:PE9000-0M.NN
OPTS:\$63xy
Where x is a bit field defined as follows:
bit $0=1$ Color support
bit $1=0$
bit $2=1$ Periodic Status Supported
bit 3 = Always 0
bit 4 = Always 1
bit 5 = Always 1
bit $6=$ Always 0
bit 7 = Always 0
The y is a bit field defined as follows:
bit $0=0$
bit $1=$ Knife is installed.
bit $2=0$
bit 3 = Always 0
bit $4=$ Always 1
bit 5 = Always 1
bit $6=$ Always 0
bit $7=$ Always 0
[ENQ] <22> Inquire Error status
ASCII [ENQ]<22>
Hexadecimal 05H 17H
Decimal <5> <22>
Function The [ENQ] <22> command reports on the error status.
Response $\quad[A C K]<22><n><r>$
Where <22> is the echo of the command ID.
<n> is the number of return bytes $+40(28 \mathrm{H})$
(to prevent confusion with XON/XOFF).
$<\mathrm{r}_{1}>$ : Bit status as follows:
bit $0=$ Cover is open.
bit $1=$ Receipt Paper is Low
bit $2=$ Receipt paper is out.
bit $3=$ Not used
bit $4=$ Not used
bit $5=$ The Auto-Cutter has faulted.
bit $6=1$ always
bit $7=$ An serious error has occurred.
Note 1: If bit 7 is set, a serious error has occurred. The printer is not able to recover from type of error without operator intervention. If bit 7 is set without bit 5 (Auto-cutter fault) then the print carriage has faulted, which is probably caused by a paper jam or a component failure. The host system may issue an [ENQ]<10> (Reset Request command) to attempt to recover. The Reset Request will reset the printer to an initial power up state. All data will be lost.
Note 2: When a serious error occurs (bit 7 set) the printer enters a static state. Status responses will reflect the state of the printer when the error occurred.
Note 3: For this status request to function during a serious error, the "Buffer Full Only" off line option should be selected.
[ENQ] <23> Inquire user-store status
ASCII [ENQ]<23>
Hexadecimal 05H 17H
Decimal <5> <23>
Function The $[E N Q]<23>$ command reports on the user-store status.
Response [ACK] <23> <Report> <0>
Where <23> is the echo of command ID. The report is a null terminated string with the following format:

12345[CR][LF](Free user store)
12345 Type Name...[CR][LF] (First entry) etc.
12345 Type Name...[CR][LF] (Last entry) <0>
Type $\quad$ The type field describes the type of information.
M = macro
$C=$ character definition
[ENQ] <24> Inquire Color status
ASCII [ENQ] <24>
Hexadecimal 05H 18H
Decimal <5> <24>
Function The [ENQ] <24> command reports Color Cartridge status.
Response $\quad[A C K]<24><$ Length $+40><n_{1}><n_{2}><n_{3}>$
Where <24> Is the echo of command
$<\mathbf{n}_{1}>\quad$ Secondary Paper Color $0=$ Not installed, $1=$ Red, $2=$ Green, $4=$ Blue
$<\mathbf{n}_{2}>\quad$ Primary Paper Color $1=$ Red, $2=$ Green, $4=$ Blue $16=$ Black
(always Black)
$<\boldsymbol{n}_{3}>\quad$ Pen Status
bit $0=$ Not defined 0 always
bit $1=$ Not defined 0 always
bit $2=$ Not defined 0 always
bit $3=$ Not defined 0 always
bit $4=$ Not defined 0 always
bit $5=$ Not defined 0 always
bit $6=1$ always
bit $7=0$ always
[ENQ] <25> Inquire Electronic Journal
ASCII [ENQ]<25>
Hexadecimal 05H 19H
Decimal <5> <25>
Function The [ENQ] <25> command returns current status and free space in the electronic journal
Response $[N A K]<25\rangle<n\rangle\left\langle r_{1}\right\rangle\left\langle r_{2}\right\rangle \ldots$.. (Electronic Journal NOT active)
[ACK] $<25><n><r_{1}><r_{2}>\ldots$ (Electronic Journal active)

Where <25> is the echo of command ID.
<n> is the number of return bytes +40
$(28 \mathrm{H})$ (to prevent confusion with XON/XOFF).
$<\mathbf{r}_{1}>$ : $\quad$ MSB of size in $K$ bytes.
$<r_{2}>$ : LSB of size in $K$ bytes.
[ENQ] <26> Inquire current print zone
ASCII [ENQ]<26>
Hexadecimal 05 H 1 AH
Decimal <5> <26>
Function The [ENQ] <26> command returns current print zone in dots
Response $\left.[A C K]<26><n><r_{1}\right\rangle\left\langle r_{2}\right\rangle$
Where <26> is the echo of command ID.
<n> is the number of return bytes +40
$(28 \mathrm{H})$ (to prevent confusion with XON/XOFF).
$<r_{1}>$ : $\quad$ MSB of the print zone.
$<r_{2}>: \quad$ LSB of the print zone.
[ENQ] <28> Inquire Buffer status
ASCII [ENQ]<28>
Hexadecimal 05 H 1 CH
Decimal <5> <28>
Function The [ENQ] <28> command returns current print zone in dots
Response $[A C K]<28><n><r_{1}>$
Where <28> is the echo of command ID.
<n> is the number of return bytes +40
$(28 \mathrm{H})$ (to prevent confusion with XON/XOFF).
$<r_{1}>$ : $\quad 0-100$ Percent of input buffer being used.
[ENQ] <31> Inquire Power on status
ASCII [ENQ]<31>
Hexadecimal 05H 1FH
Decimal <5> <31>
Function The [ENQ] <31> command returns File and POR system status
Response [ACK] <31> <n> < $\left.r_{1}\right\rangle\left\langle r_{2}\right\rangle\left\langle r_{3}\right\rangle$
Where <31> is the echo of command ID.
<n> is the number of return bytes +40
(28H) (to prevent confusion with XON/XOFF).
$<\mathbf{r}_{1}>$ : Power up system status where the bits are defined as follows:
$0 \times 01$ No Font present
$0 \times 02$ No Files present
$0 \times 04$ File system faulted and has been cleared
$0 \times 08$ POR.INI file was missing and a default has been generated.
$0 \times 10$ Code page file requested Is missing.
$0 \times 20$ The primary FAT was corrupt and the alternate was used.
$0 \times 40$ The primary and alternate FAT's are corrupt and the file system has been initialized.
$<r_{2}>$ : Font system status
$0 \times 00$ Font system closed
$0 \times 01$ Font system Ready
$0 \times 02$ Font system Fault.
All other values are errors that will also set the R3 status byte.
$<r_{3}>$ : Font imaging system extended status.
Extended status information being present is a serious error in the printer.
Typically generated by a faulty font file. Any value here should be interpreted as a fault.
[ENQ] <33> Inquire Paper Size.
ASCII [ENQ] <33>
Hexadecimal 05H 21H
Decimal <5> <33>
Function The [ENQ] <33> command Paper Size Status.
Response [ACK] <33> <41> <n>

## Where

<33> Is the echo of command
<41> Length + 40
<n> Paper Size Status.
bit 0,1 $0=40 \mathrm{~mm}$ paper
$1=58 \mathrm{~mm}$ paper (Note ${ }^{27}: 40 \mathrm{~mm}$ can be reported as 58 mm )
$2=80 \mathrm{~mm}$ paper
$3=82 \mathrm{~mm}$ paper $^{28}$
bit $2=$ Not defined 0 always
bit $3=$ Not defined 0 always
bit $4=140 \mathrm{~mm}$ paper divider installed.
bit $5=$ Not defined 0 always
bit $6=1$ always
bit $7=0$ always

[^17][ENQ] <34> Inquire Firmware ID and Rev.
ASCII [ENQ] <34>
Hexadecimal 05 H 22 H
Decimal <5> <34>
Function The [ENQ] <34> command returns the Firmware ID and revision.
Response $[A C K]<34><51>$ PE9000-X.XX.
Where
<33> Is the echo of command
<51> Length +40
Firmware ID PE9000
Separator - (0x2D or 45D)
Rev X.XX (Current Revision in ASCII)
[ENQ] <35> Inquire USB Watch Dog Resets.
ASCII [ENQ]<35>
Hexadecimal 05 H 23 H
Decimal <5> <35>
Function The [ENQ] <35> command returns the number of USB Watch dog resets and then resets the count to zero.
Response [ACK] < 35> <41> <n>
Where
<35> Is the echo of command
<41> Length +40
<n> $\quad$ The number of USB Watchdogs since the last inquire.
[ENQ] <36> Inquire current UTF encoding mode.
ASCII [ENQ]<36>
Hexadecimal 05 H 24 H
Decimal <5> <36>
Function The [ENQ] <36> command returns the current UTF encoding mode.
Response [ACK] < $36><41><n>$
Where
<36> Is the echo of command
<41> Length + 40
<n> The UTF Mode where:
$0=$ ASCII
1 = UTF8 Text only
2 = UTF8
$4=$ UTF16
8 = UTF16BE
16 = UTF16LE
Note: This command must be sent in the current encoding. Only ASCII, UFT8 Text, and UTF Modes use identical data structures.
[ENQ] <37> Inquire barcode error status
ASCII [ENQ] <37>
Hexadecimal 05H 25H
Decimal <5> <37>
Function The [ENQ] <37> command returns the last barcode error code.
Response ACK <37> <42> <Error ${ }_{7-0}><$ Error $_{15-8}>$
Where <Error ${ }_{7-0}><$ Error $_{15-8}>$ indicate a 16 bit barcode error code.
The returned error code reflects the last barcode print attempt. See page 197 for a detailed list of barcode errors. 0 indicates no error was detected.
[ENQ] <38> Inquire currently loaded firmware file name
ASCII [ENQ] <38>
Hexadecimal 05H 26H
Decimal <5> <38>
Function The $[E N Q]<38>$ command returns the file name of the currently loaded firmware.
Response ACK <38> <Len+40> Firmware Id String<0>
[ENQ] <39> Inquire update Process status and CRC.
ASCII [ENQ] <39>
Hexadecimal 05H 27H
Decimal <5> <39>
Function The [ENQ] <39> command returns File and POR system status
Response $[A C K]<39\rangle\langle n\rangle\left\langle r_{1}\right\rangle\left\langle r_{2}\right\rangle\left\langle r_{3 L}\right\rangle\left\langle r_{4 H}\right\rangle$
Where <39> is the echo of command ID.
<n> is the number of return bytes +40
$(28 \mathrm{H})$ (to prevent confusion with XON/XOFF).
$<_{1}>$ : CBT Update Process Status:
$0 \times 00$ Idle
$0 \times 01$ Get Name
$0 \times 11$ Fault
$0 \times 03$ Get Data
$0 \times 04$ Write
$0 \times 05$ Done
$0 \times 15$ Not Processed
$0 \times 25$ Done No Validation requested
$0 \times 12$ Bad CRC
0x06 Roll Back performed
$0 \times 08$ Not yet done
$<_{2}>$ : $\quad$ CBL Update Process Status:
0x00 Idle
$0 \times 01$ Get Name

```
    0x11 Fault
    0x03 Get Data
    0x04 Write
    0x05 Done
    0x15 Not Processed
    0x25 Done No Validation requested
    0x12 Bad CRC
    0x06 Roll Back performed
    0x08 Not yet done
<r_3L><< }\mp@subsup{\mp@code{4H}}{4H}{
[ENQ] <40> Inquire Current Firmware CRC
\begin{tabular}{|c|c|}
\hline ASCII & [ENQ] <40> \\
\hline Hexadecimal & 05H 28H \\
\hline Decimal & <5> <40> \\
\hline Function & The [ENQ] <40> command returns current firmware CRC. \\
\hline \multirow[t]{2}{*}{Response} & [NAK] <31> < CRC \({ }_{\text {L }}><\) CRC \(_{H}>\) Not calculated yet \\
\hline & [ACK] <31> <CRC L \(^{\text {c }}<\) CRC \(_{H}>\) ( Calculation complete \\
\hline \multirow[t]{3}{*}{Where <n>} & <40> is the echo of command ID. \\
\hline & is the number of return bytes +40 \\
\hline & \((28 \mathrm{H})\) (to prevent confusion with XON/XOFF). \\
\hline <CRC \({ }_{\text {L }}\) > & 16 bit CRC low 8 bits \\
\hline \(<\mathrm{CRC}_{\mathrm{H}}\) > & 16 bit CRC upper 8 bits \\
\hline
\end{tabular}
```

[ENQ] <41> Inquire Current Firmware CRC
ASCII [ENQ]<41>
Hexadecimal 05 H 29 H
Decimal <5> <41>
Function The $[E N Q]<41>$ command firmware update process status.
Response $\left.[A C K]<41><n><r_{1}\right\rangle\left\langle r_{2}\right\rangle$
Where <39> is the echo of command ID.
<n> is the number of return bytes +40
(28H) (to prevent confusion with XON/XOFF).
$<_{1}>$ : CBT Update Process Status:
0x00 Idle
$0 \times 01$ Get Name
$0 \times 11$ Fault
0x03 Get Data
$0 \times 04$ Write
$0 \times 05$ Done
$0 \times 15$ Not Processed
0x25 Done No Validation requested
$0 \times 12$ Bad CRC
0x06 Roll Back performed

0x08 Not yet done
< $\mathbf{r}_{2}$ : $\quad$ CBL Update Process Status:
$0 x 00$ Idle
$0 x 01$ Get Name
0x11 Fault
0x03 Get Data
$0 x 04$ Write
$0 \times 05$ Done
0x15 Not Processed
$0 \times 25$ Done No Validation requested
$0 \times 12$ Bad CRC
0x06 Roll Back performed
0x08 Not yet done

ASCII [ESC] [EM] P<n>
Hexadecimal 1BH 19H 50H <n>
Decimal <27> <25> <80><n>
IPCL None
EPOS None
Description This command activates the periodic status back feature. It will automatically return an [ENQ]<20> status (See page Error! Bookmark not defined.) on a periodic bases. The value of $n$ is the period in 100 MS intervals. This command is saved through power cycles. Once set it need not be set again, however you can set it the same value repeatedly as it is only saved if it is changed. In general it should not be changed on a regular bases.
Where $\quad n=$ Interval in 100 MS increments. IE $20=2$ Seconds. Setting the value to 0 disables the feature.

Note: Periodic status back can also be activated with the [ESC][EM]]p command, however it is not save during a power cycle.
[ESC] [EM]p<n>
Activate Periodic Status Back
ASCII [ESC] [EM] p<n>
Hexadecimal 1BH 19H 70H <n>
Decimal <27> <25> <112><n>
IPCL None
EPOS None
Description This command temporarily disables and/or enables the periodic status back feature if previously activated with the [ESC][EM]P command.

Where $\quad n=0$ disables PSB and $n=$ (non zero) Enables PSB at the interval defined by the [ESC][EM]P command.

If not previously activated with the [ESC][EM]P command, this command will activate it but the setting is not saved through a power cycle.

Where $\quad n=$ Interval in 100 MS increments. IE $20=2$ Seconds. Setting the value to 0 disables the feature.

## ESC/POS ${ }^{\text {TM }}$ Codes

The EPOS codes that are supported by the Model 9000 Printer are listed in this section.

Note: The Epson emulation does not support Unicode, Double Byte or downloaded TrueType fonts.

## Differences between Epson TM T88V and Model 9000

In a few minor ways, the operation and programming Model 9000 is not identical to a TM-T90. The following is a summary of key differences.

## Page Mode

The page mode in the Model 9000 operates in the same way as the TM-T88 and the TM-T90, however, the page size can be larger if the ESC/POS emulation is selected.

## Undocumented Epson Commands

There are a number of undocumented commands in Epson printers. Where TransAct is aware of these commands, they have been duplicated in the Model 9000 Printer.

## Barcodes

The barcode generation in the Model 9000 generates barcode differently and at a different resolution than the Epson printer. In most cases the barcodes are equivalent; however, in some cases the Model 9000 may generate a larger or smaller image and may be encoded differently.

## Real-time Status

The Model 9000 Printer is available in USB, serial, parallel and Ethernet versions. Epson supports parallel operation through a parallel to serial interface. Consequently, the response times for the Model 9000 Printer are generally faster. The Model 9000 Printer implements the IEEE 1284 nibble-mode standard. If an application requires real-time status from the printer, the IEEE 1284 bi-directional protocol must be used. The Model 9000 Printer does not support byte mode. If the Model 9000 Printer is used in an IEEE 1284 compliant system, byte mode should be an extension and the default should be nibble mode.

The Model 9000 Ethernet adapter provides real time status using the UDP IP protocol. This is not the same as the Epson printer. In general the Model 9000 when operating through an Ethernet interface will not be interchangeable.

The Model 9000 Printer supports the EPOS real-time status commands [DLE] [ENQ] and [DLE] [EOT] and are preprocessed by the printer. The printer supports all the response bit fields as defined by the TM-T88 and TM-T90 Printers. The Model 9000 Printer looks at and evaluates all commands as they are received and does not respond to [DLE] [ENQ] or [DLE] [EOT] commands that happen to be embedded in graphics or other commands. (Refer to the buffer and preprocessor descriptions in later sections.)

## Epson Licensed Firmware

Epson has patented several features used by the TM-88 and TM90. If you use automatic status back or the real time cash drawer command, you must use the added cost licensed firmware in the Model 9000.

If you don't need those commands or features, using the standard Model 9000 firmware will result in a lower cost printer.

## Model 9000 Citizen Emulation

The Model 9000 printer uses a subset of the Epson emulation for Citizen.

## Model 9000 Star Emulation

The Model 9000 printer has Star emulation that will allow the Model 9000 to replace most Star printers with similar features to the Model 9000.

Star used a real time cash drawer command that uses features patented by Epson. If you use the Star real time cash drawer command, you must use the added cost licensed firmware.

## Model 9000 Axiohm Emulation

The Model 9000 printer has an Axiohm emulation that closely matches the A793 and A794 printers. The Axiohm command set (for the most part) is a superset of the Epson emulation. Because several of the Axiohm commands make use of features that patented by Epson, you must use the added cost licensed firmware to use these commands. If you don't need those commands and features, using the standard Model 9000 firmware will result in a lower cost printer.

## Model 9000 Graphics

## Printing Graphics

The Model 9000 Printer has bit-image graphic capability and a full PC-compatible graphic character set. The bit image format is similar to that used on other personal computer printers. Three modes of operation are available. Single-density is the fastest mode. It makes a single unidirectional 60 dpi print pass. Full-speed double-density mode makes two passes with a half-dot offset. Full-speed double-density mode is half the speed of single-density mode, but it prints at 120 dpi. Half-speed double-density mode is half the speed of full-speed double-density; however, the print quality is enhanced.

## Character Graphics

Character graphics is the term for joining individual characters together to produce a mosaic of characters that form a graphic image. The simplest method uses an * (or any other character) to form an image. For example, ITHACA ${ }^{\circledR}$ might be formed as follows.

| * * * | * ** | $\star$ | * | $\star \star$ |  | $\star \star \star$ |  | * * |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\star$ |
| * | $\star$ |  | * |  | * | * |  |  |  |
| * | $\star$ | $\star$ | * | $\star$ | * | * | * | * | * |
| * ** | * | * | * | * | * |  |  | * | * |

Figure 68 Example of Character Graphics

The extended character set of the printer supports line graphic characters that can be combined to form windows and other shapes. For the shapes to join from line to line, the spacing must be set properly.

All characters are in a nine-dot-high character cell. The dots are $1 / 60$ inch apart. Therefore, the line spacing should be $10 / 60$ or $1 / 6$ inch. The set fine line space command can be used to set the line spacing. If possible, the spacing should be reduced slightly to overlap the rows, which prevents any white spacing from appearing between the lines. The following example illustrates the use of extended character graphics.

```
[ESC]:
[ESC] 3<27>
[ESC]a<1>
<201>
<205><205><205><205><205><205><205><205><205>
<205><205><205><205><205><205><205><205><205>
<205><205><205><205>
<187> [CR][LF]
<186> ITHACA PRINTERS <186>[CR][LF]
<186> <186>[CR][LF]
<200>
<205><205><205><205><205><205><205><205><205>
<205><205><205><205><205><205><205><205><205>
<205><205><205><205>
<188>[CR][LF]
[ESC]a<0>
[ESC]0
[ESC][P<15>
[CR][LF]
ST# 2000 OP# 00067 TE# 021 0035[CR][LF]
KLEENEX FAM D04 QTY 1 1.68 J[CR][LF]
RITZ DO1 QTY 1 2.50 D[CR][LF]
CHIPS DO1 QTY 1 1.50 D[CR][LF]
STORAGE BAG DO4 QTY 1 1.50 J[CR][LF]
    SUB TOTAL 7.18[CR][LF]
    SALES TAX 1 .50[CR][LF]
    ------[CR][LF]
    TOTAL 7.68[CR][LF]
    CASH TEND 20.00[CR][LF]
    CHANGE DUE 12.23[CR][LF]
[CR][LF]
```

Figure 69 Example Commands for a Sample Receipt


Figure 70 Sample Receipt
When printing line graphics, the data path to the printer must be eight bits. Seven-bit serial protocols do not access the extended characters. The extended characters require that the form be reverse fed. Consequently, printing line graphics on the receipt may be less than acceptable.

## APA Graphics

The printer is capable of all-points-addressable (APA) or horizontal graphics.
Generating a graphic image by hand is time consuming and tedious. It is recommended that a graphic package be used to create a graphic image. The following procedure will help with the setup.

## Procedure for APA graphics:

1. Generate the graphic image in the program of your choice. APA graphics only support monochrome images.
2. Make sure the paper size chosen fits the printer ( 3 inches wide with 0.25 -inch margins). If the paper size cannot be set, print a portion of the page.
3. Print the graphic to a file using a generic, IBM, graphic, 9-pin driver. The standard IBM resolutions are $240 \times 216 \mathrm{dpi}, 120 \times 72 \mathrm{dpi}$, and $60 \times 72$ dpi. The Model 9000 Printer supports all three resolutions. For good resolution with reasonable speed, use $120 \times 72$ dpi.
4. Print the graphic image to a file.
5. Edit the resulting file to remove any unwanted form control, and insert the Model 9000 form control.
6. Make the resulting file available to your application, so it can be sent to the printer when required.

## Color Graphics

The Model 9000 has a two-color option. The Model 9000 has a two-color and is not a full color printer. A full color printer forms the various colors of an image by mixing inks of different colors on the paper. The amount of each color determines the hue. Typically the paper is white and no ink produces a white. Mixing yellow and cyan produces a red and mixing cyan, magenta, and yellow in equal amounts produces a black or gray.

The Model 9000 is a two-color printer. It has white (the paper), and two predefined colors. Typically one of the colors is black, and the other is a highlight color. The high light color is primarily used in text printing to highlight a line, and typically is red.

When the Model 9000 generates graphics, both colors are used to generate the image. Because the program that generates the graphic image data should not need to be aware of the colors available in the printer, three color planes are sent to the printer. The printer is aware of what colors the cartridges are that will generate the image. The printer will converts the full color image information into a two color image.

If the Model 9000 printer is configured with a black color and a highlight color, there is no point in the printers mixing the highlight color with black. If however, the Model 9000 printer is configured with two colors other than black, the printer attempts to mix the colors to generate black. (Note that in text mode the colors are not mixed.) This requires that there be two basic modes of color graphic generation.

If the Model 9000 printer is configured with two colors, the printer will mix the two colors on the thermal paper, using the primary and the secondary color. Because there are three primary colors, the printer is unable to print full color. The printer follows the rules for mixing colors and it if the result is ambiguous (because of the missing color), the printer will print with the primary color. This results in a image made up of primary color dots, secondary color dots and mixed dots. The mixed dots color may not be black but a mixture of whatever colors are installed.

In text mode, the primary color is assigned as the default color and the secondary color is assigned as the alternate highlight color. In most cases the darkest color should be initialized as the primary color.

The Ithaca ${ }^{\circledR}$ Windows print driver provides the translation from Windows color to the three color planes. When a graphic is created for the Model 9000 Printer, the colors used must take into account that colors other than the highlight color will print black. The Ithaca ${ }^{\circledR}$ Windows driver helps adjust the color content and generates the desired print from a full color image ${ }^{29}$.

## Procedure for color horizontal graphics:

There are many ways to generate graphics for the Model 9000 printer. The easiest is to use the PJColor program. (See the next section.) The other way is to use the Ithaca windows driver and capture the output to a file.

To generate an image using the windows print driver:

1. Generate the graphic image in the program of your choice. Use colors consistent with the two colors installed in the printer.
2. Make sure the paper size you pick fits the printer ( 3 inches wide with 0.25 -inch margins).
3. The Model 9000 print driver should be installed (even if the printer is not connected).
4. Set up the print driver to print the graphic to a file using whatever resolution is required.
5. Print the graphic image to a file.
6. Later, when you want to print the graphic, simply copy the file to the printer with your application.
7. You may also copy the graphic to the graphic save buffer and then request the printer to retrieve and print it without re-sending the graphic data.

Optionally, process the color image with the Ithaca ${ }^{\circledR}$ color image processor ${ }^{29}$ in the PJColor program. The program can print the image or generate a printable file.


THANK YOU
FOR SHOPPING WITH US

Figure 71 Receipt with graphics

As with all graphics, the data path to the printer must be eight bits. Seven-bit protocols do not work.

[^18]
## Model 9000 Universal Color Graphics

The Model 9000 Printer Color ${ }^{30}$ firmware supports the ability to print two color graphics in all emulations. This support is an enhancement to the original TM-U200, ESC/POS, Star, and Citizen printer emulations.

The intent of Universal Color Graphic support is to allow the Model 9000 color graphics ${ }^{31}$ capability to be used in existing applications that do not support color graphics.

There are several ways to add color graphics to an existing application. The easiest for you will depend on how much control you have over your application. At a minimum, you should be able to change the name printed on the top of a receipt. With the PJColor ${ }^{32}$ program you can store a named graphic into the printer an print it by changing the text name to match the stored graphic. For example, if your receipt has a name like "Joe's Market", you can save a graphic in the printer named "Joe's" and then change the "Joe's Market" to "\&\%URJoe's\&" When the Model 9000 finds "\&\%URJoe's\&", it is replaced with the stored graphic.

Some applications allow a graphic file to be sent to the printer. In this case PJColor can generate the graphic file and then your application can send it to the printer. This file will support two color print.

PJColor also has a feature that will allow you to generate a file that will define the graphic to be stored into the printer. You can then use this file to setup any number of printers with the same graphic.

If you are using a windows print driver (other than the TransAct Model 9000 driver) to support your printer, you will not be able to send color graphics to the printer through the print driver. The print driver will not support universal color graphics. You can however, store the graphic in the printer and use IPCL commands to print the stored graphic. (You must select a printer resident font for this to work.)

The following is a short summary and how to description of these features.

## Print File Graphics

PJColor can generate a print file that may be sent to the printer in any emulation and produce a two color print graphic.

## To generate a print file.

1) Start PJColor
2) Under Settings, Select the Model 9000 printer. Then select the emulation that machines the printer.

[^19]3) Select the resolution you would like to have the printer use to print the graphics. Low resolutions are faster, high resolutions produce better graphics.
4) Load the graphics Image you wish to print.
5) Select the communications port and configuration.
6) Adjust the image to produce the effect you would like. The lower graphic window displays an approximation of the printed image.
7) When you are satisfied with the graphic, press the "Print to a File" button. PJColor will ask what file you would like to receive the print data.
8) This file can be sent to the printer and the graphic will be printed.

## Store Graphics in the printer:

PJColor can store a graphic in the Model 9000 Printer or generate a file that will store a graphic in the printer.

## To Store a graphic in the printer

1) Start PJColor
2) Under Settings, Select the Model 9000 printer. Then select the emulation that you will be setting the printer to.
3) Select the resolution you would like to have the printer use to print the graphics. Low resolutions are faster, high resolutions produce better graphics.
4) Select the communications port and protocol that is to be used to communicate to the printer.
5) Load the graphics Image you wish to print.
6) Adjust the image to produce the effect you would like. The lower graphic window displays an approximation of the printed image.
7) When you are satisfied with the graphic, press the "Store in Printer" button. PJColor will attempt to interrogate the printer and will display the graphics currently in the printer if any. (Note: If PJColor cannot communicate with the printer, only the "Save to File" option will be allowed.)
8) Make sure there is enough room in the printer for the graphic.
9) Insert a name in the "Macro Name" box. Keep it simple, this name will be used later to print the graphic.
10) Record the graphic in the printer.

## Print a stored graphic.

In the data stream to the printer enter "\&\%URName\&" and the graphic will print in place of the "\&\%URName\&" data. The "Name" must be identical to the name entered earlier.

## Generate a file to store graphics into a printer

To generate a file that will store a graphic into a printer, follow the same procedure to store a graphic in a printer up through step 8. Then:

1) Insert a name in the "Macro Name" box. Keep it simple, this name will be used later to print the graphic
2) Press the "Save to File" button. This will allow you to select a file where the stored universal graphic information is saved.
3) This file contains an "erase any previous graphic with the same name" command, "a save new graphic with this name" command and the graphics information.
4) This file can then be sent to the printer and the graphic will be saved in the printer. Note: If the target printer does not have enough room for the graphic information to be stored, the graphic will not be stored.

## How universal graphics is done

The printer extends all the emulations to support two additional escape sequences and adds limited IPCL support.

IPCL (Ithaca Printer Control Language) is an ASCII method of sending printer commands to the printer. In Ithaca PcOS emulation, IPCL command support is extensive. In other emulations, IPCL support is limited to the following commands.

| \&\%CR | Insert a [CR] |
| :--- | :--- |
| \&\%LF | Insert a [LF] |
| \&\%UAxxx | Feed xxx paper steps and cycle auto-cutter |
| \&\%CLx | Select Color where x = 0 for the Primary or 1,2,3 for secondary |
| \&\%UBName\& | Begin defining universal graphic "Name" |
| \&\%UGName\& | End the definition of "Name" |
| \&\%URName\& | Run (print) universal graphic "Name" |
| \&\%UDName\& | Remove universal graphic "Name" from nonvolatile memory |
| \&\%USName\& | Flag universal graphic "Name" to be run when the printer is |
|  | turned on |
| \&\%UFALL\& | Erase all stored universal graphics. (Erases all User Store) |
| \&\%UQ\& | Prints a directory of the universal graphics currently stored in the <br> printer |
| \&\%UTx | Changes the Name termination character from "\&" to "x". "x" may <br> range from 21 H to 255 H |

Note: The \& used to flag the end of the Name string is not valid in PcOS Ithaca emulation mode. You should use $<0>$ or define the terminator with the \&\%UTx command.

The extended Escape sequences are [ESC][US]... and [ESC][FS]...
The [ESC][US] commands are the same as the PcOS emulation. The [ESC][FS] commands are not intended to be used by the customer. They provide the universal graphics support. Because graphics would be very difficult to generate and are not supported by any graphics drives other than PJColor .

## How to use IPCL commands in text strings

If your software allows you to pass text strings to the printer, you should be able to use the universal graphics commands. Most POS software allows user customization of the text message printed at the beginning and the end of the receipt.
To use the Universal IPCL commands simply place them in a text string like the following example; note that your results may vary depending on the operation system, software and the ability to pass ASCII Characters.

## Load and store named graphic image

- First you must create the graphic image using the PJColor Color Image Converter and save the image to a file. See the section "Generate a file to store graphics into a printer" above.
- Send the following text strings to the printer using whatever means is available to you.
\&\%UBLogo\& Begin defining macro "Logo"
\&\%UGLogo\& End the Definition of "Logo"
\&\%UMLogo\& Save Macro "Logo" to nonvolatile memory
- A graphic image named "Logo" should now be stored in the nonvolatile memory.
- To verify the image is present, use the "\&\%UQ\&" IPCL command or the PJColor Color Image Converter to print the name and size of the stored images.


## Recall and print stored named graphic image

- Send the following text string to the printer using whatever means is available to you.
\&\%URLogo\& Run Macro "Logo" (Print the macro)


## Cautions

Universal graphics information is stored in the same place as user defined characters and user defined macros. If you are using an emulation such as ESC/POS that supports macros and/or user defined characters, universal graphics will compete for space with these functions. In addition, the "\&\%UFALL\&" (Erase universal graphics) will also erase any user defined graphics and macros.

If you are using the Ithaca PcOS emulation, these commands are identical with the User Store commands except for the terminator character. You may change the NUL terminator to "\&" with "\&\%UT\&" if you find the "\&" easier.

## Universal Color Command Descriptions

| \&\%UB <Name..>\& Begin named universal graphic record |  |
| :--- | :--- |
| IPCL |  |
| Description | The \&\%UB <Name..>\& command initializes the universal graphic buffer <br> structure, and redirects the following data to the universal graphic buffer. <br> It uses the <Name..> field as a reference. If the name already exists in |
|  | the flash user store, the command is ignored. The command must be <br> followed by the "End name universal graphic record" command with the |
|  | same name. If the data that follows is larger than the universal graphic |
| buffer (about 16K), the universal graphic definition is terminated without |  |
| saving any data. |  |

\&\%UG <Name..>\& End named universal graphic record
IPCL \&\%UG <Name..>\&
Description The \&\%UG <Name..>\& command ends the universal graphic record operation and saves the universal graphic to flash. It uses the <Name..> field to verify the command end and must match the "Begin named universal graphic record" command. If the name already exists in the flash user store or the universal graphic memory is exceeded, the command is invalid, and the <Name..> field prints.
\&\%UR <Name..>\& Run universal graphic data from user store
IPCL \&\%UR <Name..>\&
Description The \&\%UR <Name..>\& command loads the referenced universal graphic into the universal graphic buffer. The universal graphic buffer is then inserted into the data stream. If the named item does not exist or is not a universal graphic, the Model 9000 ignores the command.
\&\%US <Name.. >\& Flag item as a start-up universal graphic
IPCL \&\%US <Name.. >\&
Description The \&\%US <Name.. >\& command flags the referenced item to `be processed at startup. Only one user character definition and one universal graphic may be flagged to run at startup.
\&\%UD <Name..>\& Delete item from user store
IPCL \&\%UD <Name..>\&
Description The \&\%UD <Name..>\&command removes an item from user store and frees up space. If the item does not exist, the Model 9000 ignores the command.
\&\%UFALL\& Flush information from user store
IPCL \&\%UFALL\&
Description The \&\%UFALL\& command clears all entries in user store and frees the data space. It must have the name, "ALL" (in uppercase) attached.
\&\%UQ\& Report on user store
IPCL \&\%UQ\&
Description The \&\%UQ\& command prints a status report. The intention of the command is to aid in universal graphic development.
\&\%UT<n> Redefine User Store Termination Character
IPCL \&\%UT<n>
Description This command allows the terminator used to signal the end of the name field in User Store commands to be modified. The value of <n> is used for the terminator. The value of $n$ may be from 0 to 255.
Example If \&\%UT\% were sent to the printer the User Store command to run universal graphic "Demo" would be \&\%URDemo\%.
\&\%CL Set Print Color

IPCL \&\%CL <n>
Description This command allows various colors to be selected on printer emulations that do not support color text.
Where n: $0 \quad$ Print with the Left cartridge (Typically Black)
1, 2, 3 Print with the Right cartridge (Typically Red, Blue, or Green)
\&\%UA Cycle Auto-Cutter
IPCL $\quad \& \% U A<m_{1}><m_{2}><m_{3}>$
Description This command feeds $\mathrm{m} / 96$ inches of paper and cycles the auto cutter.
Where m: $\quad m=m_{1}{ }^{*} 100+m_{2}{ }^{*} 10+m_{3}$

## Model 9000 Coupon-Cut-Logo Feature

The Model 9000 printer has a feature that will allow a coupon and or logo graphic to printed as part of the existing auto cutter command.

To activate this feature, it must first be configured. Configuration consists of specifying in what order the Coupon-Cut-Logo is processed and optionally, how much paper is to be feed after the new cut operation.

Once configured, the Coupon and/or logo must be defined and loaded into the printer. The "Universal Graphics" feature should be used to define and load the graphic. The Coupon is named "Coupon", and the Logo is named "Logo". They may be saved in any resolution and of any size. They also need not be all graphics.

The existing application cut command will be replaced by the Coupon-Cut-Logo operation. Configuration options are as follows:

Cut Command Logo:

| Cut-Logo | Perform Feed to cut, then cut, and then print the Logo. |
| :--- | :--- |
| Coupon-Cut | Print the Coupon, Feed to Cut, and Cut. |
| Logo-Cut | Print the Logo, Feed to Cut, and Cut. |
| Cut-Coupon | Perform Feed to cut, then cut, and then print the Coupon. |
| Coupon-Cut-Logo | Print the Coupon, Feed to cut, Cut, ad then print the Logo. |
| Logo-Cut-Coupon | Print the Logo, Feed to cut, Cut, ad then print the Coupon. |
| Cut-Logo-Coupon | Perform the Feed to cut, Print the Logo and then the Coupon. |
| Cut-Coupon-Logo | Perform the Feed to cut, Print the Coupon and then the Logo. |
| Logo-Coupon-Cut | Print the Logo, then the Coupon, feed to cut and Cut. |
| Coupon-Logo-Cut | Print the Coupon, then the Logo, feed to cut and Cut. |
| Disabled | Perform the Normal cut. |

Cut Command Logo Feed: 0 to 80 mm .

## Scalable Fonts

Your TransAct ${ }^{\circledR}$ Model 9000 printer uses outline and/or stroke based scalable fonts. These fonts provide you with additional font options as well as improved character appearance, while functioning transparently within legacy applications.

Such fonts represent a substantial improvement over the bitmap fonts that are traditionally used for thermal printers. Bitmap characters are based on a pixel by pixel definition of the characters. With a fixed size and fixed character spacing, these bitmap fonts are limited to specific magnification factors from 2-8X, and required scaling and smoothing at larger font sizes. Moreover, such scaling and smoothing operations were often unsuitable for complex fonts such as Asian characters, where changes to pixel layout actually risk changing character meanings.

To take full advantage of scalable fonts, the Model 9000 supports additional commands and features, including:

1) Character size selection by points
2) Character pitch selection by points
3) Variable character spacing if desired
4) Custom fonts
5) Unicode support for international language support
6) Enhanced code page support for ASCII based applications.

## Character Generation

The font technology in the Model 9000 printer uses standard outline fonts (sometimes referred to as TrueType fonts) or stroke fonts. Both technologies are scalable, however each has unique advantages.


## Outline characters

Outline characters use points along the edge of the character to describe the character. The character generator defines the edge and then fills in the enclosed space to define the character.

This type of character generation produces very well formed characters and produces the best looking characters. However, it requires more storage than stroke fonts, and is best for non-Asian fonts.

## Stroke-based characters

With stroke based characters, the points stored are along the center line. Less than half the points are needed to render stroke based characters. This improves character-generation performance and uses less space.

This type of character generation is fast and efficient, and is ideally suited for Asian fonts.

## Character Definition

TrueType and Stroke fonts are designed as a complete font with character cell size and character position in the cell based on the overall font design. Typical the characters are defined as vectors and stored as coordinates on a character cell grid. The grid is in an arbitrary design unit and may be up to 4096 units on a side.

In most systems character sizes is specified as a point size where the point size refers to the character height. The character width is typically variable and designed to produce the optimal appearance. The font rendering system must take the requested point size and generate a character based on the original design units and produce a character that is the correct size and position for the printer.

In most font designs, the vertical point size includes white space between lines. The font designer defines the height of the character cell in design units for all characters then defines a character origin that will be used for all the characters in the font. The designer then defines individual character sizes based on how the font is supposed to look and all the characters that are to be included. Characters are then positioned in the cell based on this origin. All characters in the font are then based on the same rules. The white space between lines in defined to be above the character.


Figure 72 Scalable font cell indexes
The information available at print time is listed above. The complete cell is not provided, only the escapement, black width and depth and the $x$ and $y$ offsets to the origin are available. The printer cannot arbitrarily shorten the cell height that was defined by the font designer even though the provided character may fit in a smaller space. Using these rules, may result in characters that at first appear too small with excessive white space between lines, however this is how the font was designed. The printer must allow the minimum line spacing based on the point selection and not on the actual character height of any given characters. Second guessing the font designer can have very bad results when characters are encountered that use the full cell.

Asian fonts require slightly different rules for character placement and are not as one would expect. The Asian ideographs are positioned on center of mass, rather than on a baseline. The Latin data in Asian typefaces must be built on the same rules. As a result, when Latin characters are scaled the expected baselines do not line up. Asian fonts are
also fixed pitch, however, Latin character in the font are basically $1 / 2$ the width of the typical Asian character.

## Character Size

The character generation engine used in the Model 9000 internally uses a standard point based system to specify the character size. One point is $1 / 72$ of an inch. Therefore a 72 point character would form a character suitable to generate one line per inch printing. The typical application might refer to a 12 point character. This is the character height and not the width. The character width typically varies on character by character bases; for example, the lower case " i " is much narrower than the upper case " W ".

Font selection commands for selecting character sizes in legacy applications are also supported. For printers such as the Model 9000 , two or three character sizes are generally predefined with a dot matrix size of $10 \times 24$ or $13 \times 24$ dots, and this fixed size may then be double or tripled to provide larger characters when needed. To supply legacy support, the Model 9000 will automatically select the appropriate character size to support the legacy font and character scaling commands.

In the Model 9000, the horizontal and vertical point size may be set independently. Typically this type of printer would print a tall, narrow, mono-spaced character. Tall narrow mono-spaced character provides a very readable print with easy column alignment while using less paper than standard type fonts. This type of font is sometimes referred to as a condensed font.

## Selecting Character Size

The Model 9000 provides two ways to specify character size. The legacy or classic font selection method is based on dot matrix size. The second method is based on the standard type points system. The advantage of the type point system is that the print produced by the printer will match what is displayed by the host system, as both use the same system for describing the characters produced.

## Legacy or Classic Method

With the classic method, the application selects a character size and then sets the character spacing by adding or removing dot spaces between the characters. Using the scaled font, the Model 9000 provides 3 basic predefined character sizes. The smallest is a $10 \times 24$ dot-like ${ }^{33}$ font and is typically printed in pitches from 16 to 20 characters per inch (CPI). The next larger font is $13 \times 24$ dot-like, and is typically printed in pitches from 14 to 16 CPI. The largest font is $14 \times 24$ dot-like font and is typically printed at pitches from 10 to 14 CPI .

The Model 9000 always prints at 203 dots per inch (dpi) and always uses the scalable font to form characters. The resulting characters are not necessarily exactly the dot size

[^20]indicated, but are always spaced in a fixed dot cell provided that the legacy commands are used. Adding or subtracting space between characters achieves different character pitches with a fixed character cell size. As each dot has a fixed size and position, only specific pitches are possible.

Character spacing may also be selected by requesting a print pitch based on characters pre inch. Once again, the results are not exact.

If the requested spacing is zero, the character spacing will be defined by the character definition, and will result in variable spacing.

## Line spacing

The legacy commands select line spacing as lines per inch. With scalable characters, the lines per inch is a minimum spacing. If a character is larger than the spacing between lines, the line spacing will be increased to allow enough room for the characters on that line.

## Selecting character size by points.

In addition to the legacy or classic method of character size selection, the Model 9000 allows selection by point size. Point sizes from 4 to 72 points may be selected for both the horizontal and vertical axes. If a horizontal point size of zero (0) is selected for the horizontal spacing the characters are printed using variable spacing based on the character definition, using the vertical point size for the horizontal point size.

To provide fine control over character size, two commands are available, one of which specifies the size in points, and the other of which specifies the size in $1 / 4$-point increments.

If the font is a stroke font, the boldness of the characters is controlled through variations in individual stroke width.

## Diacritical Marks

It is sometimes required that diacritical marks like accents be placed on characters. The Unicode standard defines three basic ways to accomplish this.

1) Define a character with the diacritical mark as part of the character definition.
2) Define combining diacritical marks that may be added to existing characters.
3) Define diacritical marks as characters that may be positioned and combined with other characters.

The first is the easiest as the character is addressed as a single character and renders the character with the character with the diacritical mark. The second defines a character with a negative position that places the character over the previous character
when it is rendered. The third requires that the diacritical mark be positioned over the character.

The Unicode standard does not always make it clear how the diacritical marks are defined. In general characters from $0 \times 300$ through $0 \times 36 \mathrm{~F}$ are defined as combining diacritical marks. In this case, the character to character to be modified should be followed by the combining diacritical mark. The Model 9000 printer will position the diacritical mark over the previous character as defined by the diacritical mark. The printer does not control the positioning of the diacritical mark. The diacritical mark defines the fall back amount.

In the case where the diacritical mark is defined as a character, there is no negative motion in the diacritical marks definition so the host system must position the character entry position back to the previous character. This is may be done with a set position command or a simple backspace command. If backspace is used the printer will keep track of the width of the previous character and reposition the entry pointer to the end of the original character after the diacritical mark is rendered.

The Model 9000 printer does not handle multiple diacritical marks on the same character. The printer will not shift the second diacritical mark to prevent it from interfering with the previous. The Model 9000 processes the diacritical marks as defined in the font.

## Character Cache

The Model 9000 supports a high speed character cache that can cache character bitmaps, outlines, tiles, or bands of characters. The caching technique is based on a least-recently used (LRU) algorithm. The Cache contains an entry for each size of character used. The amount of space in the cache used by each character is dependent on the size of the character.

At power up, the character cache is empty. The first ticket will require that all characters to be printed be generated from the vector data. This will typically make the first ticket slightly slower than subsequent tickets. It is also possible to define a user defined font with different metrics that will cause the cache to be flushed when any of the user characters are being accessed. If this should occur, the user defined font should be changed to match the other fonts in the printer.

## Stacked or Linked fonts

The Model 9000 also uses a font stacking technology where fonts are linked together. This means that as each character is looked up, the first font in the stack containing the character is then printed. For example, if a customer would like to replace several standard characters with custom characters, a user defined font can be provided that would, if first in the link, replace the characters $n$ the standard font.

It may also be desirable to stack fonts to provide a precedent for how individual characters are looked up. For example:

- An application may wish to alter the appearance of several characters for security.
- It might be necessary to define a group of special symbols for a specific application.
- It might be necessary to supplement a font with special characters like OCR characters.

To provide this flexibility, the Model 9000 has the ability to link up to 8 fonts together. When this is done, the first font in the link is searched first. If the character is not defined, the next font in the link is searched. This process is continued until the character is found or the last font is searched.

There are two ways to define a linked font. This first is to define a default linked font in the POR.INI file. If it link font is defined in the POR.INI file, it will be selected as the default power on font. Selecting font 0 will select the linked font provided that a link font is defined.

It is also possible to dynamically define a linked font. This requires that the fonts to be linked be aliased to a font id in the POR.INI file. Defining a linked font does not necessarily activate it. If the linked font was not already active, it must be selected by selecting font 0 .

## Bitmap Fonts

It is possible to use bitmap fonts with the Model 9000 Printer. Bitmap fonts are fixed pitch and are not scalable. They will function as legacy fonts or may be selected. The printer is supplied with 4 legacy bitmap fonts. They are in a $10 \times 24,12 \times 24,16 \times 24$ draft fonts format and a $16 \times 24$ OCR B font. They are defined as follows:

BMFont0 $=$ chr10x24.bft $10 \times 24$ draft font with typical spacing of 16 characters per inch
BMFont1 $=$ chr12x24.bft $12 \times 24$ draft font with typical spacing of 14 characters per inch
BMFont2 $=$ chr16x24.bft $16 \times 24$ NLQ font with typical spacing of 12 characters per inch
BMFont4 $=$ ocr16x24.bft $16 \times 24$ OCR font with typical spacing of 12 characters per inch
It is possible to define a custom bitmap font. TransAct supports a bitmap font compiler that will convert a bitmap font picture file into a compressed bitmap file that may be loaded into the printer as a bitmap (.bft) font file.

The input to the program is a text file in a predefined format consisting of a font description followed by character definitions consisting of the character ID and then the character definition. The format is as follows: (Note lines preceded with \# characters are comments.

```
# 11 by 24 font with a base line at 22
# F=X is not used in Thermal Products
W=11 H=24 B=22 F=0
; N=0000 U=0000 NULL
01
02
04
04
06
07
            ............
        ................
    ..........
    ...........
    ...........
    ............
    ............
    ...........
    ...........
    ...........
    ...........
    ......
    ..........
    ............
```

| 16 | . . |
| :---: | :---: |
| 17 | . . . . . . . . . |
| 18 | . . . . . . . . . |
| 19 | . . . . . . . . . |
| 20 | . . . . . . . . . |
| 21 |  |
| 22 |  |
| 23 | . . . . . . . . . |
| 24 |  |
| ; $\mathrm{N}=0002$ | U=0021 EXCLAMINATION MARK |
| 01 | ........... |
| 02 | ............ |
| 03 | ...00..... |
| 04 | ...00..... |
| 05 | ...00..... |
| 06 | ...00..... . |
| 07 | ...00..... |
| 08 | ...00.... . . |
| 09 | ...00..... . |
| 10 | ...00.... . |
| 11 | ...00..... |
| 12 | ...00.... . |
| 13 | ...00...... |
| 14 | ...00..... |
| 15 | . . $00 . .$. |
| 16 | ...00...... |
| 17 | . . . . . . . . . |
| 18 | . . . . . . . . . |
| 19 | . |
| 20 | . $0000 . .$. . |
| 21 | . $00000 . .$. . |
| 22 | . 0000 . |
| 23 | . . . . . . . . . |
| 24 | . . . . . . . . . |
| ; $\mathrm{N}=0003$ | U=0022 QUOTATION MARK |
| 01 | ........... |
| 02 | . . . . . . . . . |
| 03 | .00..00.... |
| 04 | .00..00... |
| 05 | .00..00... |
| 06 | . $00 . .00 \ldots$ |
| 07 | .00..00. |


| 08 | . . . . . . . . . |
| :---: | :---: |
| 09 | . . . . . . . . |
| 10 |  |
| 11 | . . . . . . . . . . |
| 12 |  |
| 13 | . . . . . . . |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 | ............ |
| 24 | ............ |
| ; $\mathrm{N}=0004$ | U=0023 NUMBER SIGN |
| 01 | ........... |
| 02 | . . . . . . . . . |
| 03 |  |
| 04 | . . . . 00.. |
| 05 | . 00.00. |
| 06 | . $00.00 .$. |
| 07 | . 00.00. |
| 08 | . 00.0000 . |
| 09 | . 00000000 . |
| 10 | 0000000... |
| 11 | 0000.00... |
| 12 | . $000.00 \ldots$ |
| 13 | . $00.00 .$. |
| 14 | . 000.0000. |
| 15 | . 00000000. |
| 16 | 0000000... |
| 17 | 0000.00... |
| 18 | . $00.00 .$. |
| 19 | . 00.00 . |
| 20 | . $00.00 . .$. |
| 21 | . $00 . . . . . .$. |
| 22 | . . . . . . . . . |
| 23 | ........... |
| 24 |  |

Figure 73 Bit mapped font file format
The characters must be in sequential order and must be assigned Unicode character codes. $\mathrm{N}=0001$ is a sequence number in hex and is not used in controlling character generation or order. $\mathrm{U}=0021$ is the Unicode address in hex and the characters must be in ascending Unicode address order.

## Custom Fonts

The Model 9000 supports TrueType fonts. There are several companies that will provide custom character sets. The Model 9000 uses fonts provided by Monotype. You can contract Monotype through their website www.fonts.com, or by phone in U.S. \& Canada (toll-free 1-800-424-8973, directly at 1-781-970-6020), or the United Kingdom (Free Phone 0800 371242, direct +44 (0)1737 765959.)

## Internal Fonts

The Model 9000 is provided by default with a standard WGL4.0 outline-based font, and several bitmap fonts. Optionally the WGL4.0 font may be replaces with a GB18030 stroke-based font. Additional user defined outline or stroke fonts may be used as required.

The default font provided with the Model 9000 is called "Andale Mono Regular" from Monotype. This is a fixed-pitch font that produces good results when compared to legacy bitmap fonts. As another alternative, the printer may be ordered with a variablepitch font, which will allow variable-pitch printing.

## Font Storage

The Model 9000 supports a Flash file system used to store fonts, custom graphic and custom macros. A file system interface is provided for this system, where the host application may download files. In addition, TransAct Technologies provides a file loading tool that runs on Windows ${ }^{\circledR}$ based systems.

To allow flexible and easy support for all kinds of fonts, fonts are stored in the Model 9000 printer as a standard font file. These files are typically not visible to the user, however; TransAct Technologies provides a support tool that will allow the user to load their own font directly from Windows and change the way fonts are printed. It is also possible for the host application to load fonts into the printer.

The printer can contain up to 99 unique and selectable fonts. Any font may be selected at any time. In addition up to 8 fonts may be linked or stacked together. Some standard character size and character pitch commands are supported as legacy commands. The appearance of the print using those commands has been optimized using the TransAct WGL4 font. If you elect to use your own font, or the GB18030 font, you may wish to use the scalable font control commands to select the character size and spacing rather than the legacy commands.

TransAct Technologies provides a basic WGL4 font with the printer. This may be supplemented or replaced with a GB18030 Chinese font upon request. The printer will accept TrueType and compressed stroke fonts as defined by Monotype. If required, the customer may supplement the TransAct supplied fonts with their own custom fonts.

WARNING: If you elect to load fonts into the printer you must have proper rights to that font. Do not download a font to the printer if you do not have the right to use the font as a downloaded printer font.

## Font Control Commands

| Function | Select Font All |
| :---: | :---: |
| ASCII | [ESC] + 3 <ID> |
| Hexadecimal | 1 BH 2 BH 31 H |
| Decimal | <27> <43> <51> |
| Description | The [ESC] +3 command selects the font for printing. This command is used to select a previously loaded font based on its alias. |
|  | Note: Selecting font 0 will select the linked font. If the selected font does not exist, the previous font will remain in effect. <br> Note: Selecting font 100 will select bit map font 0.101 is bitmap font 1 and so on. Up to 7 bitmap fonts may be present. |
| Function | Define a Stacked or Linked Font All |
| ASCII | [ESC] + S <lD $\left.\left.{ }_{1}><\left\|D_{2}><\right\| D_{2}\right\rangle \ldots<0\right\rangle$ |
| Hexadecimal | 1 BH 2 BH 53 H |
| Decimal | <27> <43> <83> |
| Description | The [ESC] + S command defines but does not select a stacked or linked font set. This command will define a linked list of previously loaded and aliased fonts into a linked font stack. The font ID is the same ID as in the select font command. Up to 8 fonts may be linked. The last entry must be 0 . If the font does not exist, it will not be made part of the link. |

Note: You must select font 0 to activate the linked font.
Note: You can not use bitmap fonts as part of a linked font
Function Select Font by name All

ASCII $\quad[E S C]+N$ <FileName> <0>
Hexadecimal 1BH 2BH 31H
Decimal
<27> <43> <51>
Description

The [ESC] + N command selects the font for printing by file name. This command is used to select a previously loaded font by its file name. If the selected font does not exist, the previous font will remain in effect.

Note: This command may be undesirable because it embeds in the application a file name that you may wish to change in the future. By using the Alias ID the font name may change, but the application will remain constant.
Note: This command may be used to load and select a bitmap font. If a bitmap font is selected with this command, it will define bitmap font 7 and select it. Once loaded, it may be reselected by selecting font 107.

## Font Size and Spacing

The font typically defines the character size and line spacing. The typical font is proportional spaced. That is the spacing between characters varies. This is not always
the most desirable mode of operation. To give the programmer some additional control over character spacing and line height, the Model 9000 provides a width and height override command.

The following table converts dots to CPI (Characters Per Inch) points and $1 / 4$ points and is useful in calculating point size settings.

| Dots <br> $\mathbf{1 / 2 0 3 "}$ |  | Characters per <br> Inch (CPI) | Points <br> $\mathbf{1 / 7 2 "}$ |
| :---: | :---: | :---: | :---: |
| 8 | 25.38 | 2.84 | $1 / 4$ <br> $1 / 288 "$ |
| 9 | 22.56 | 3.19 | 11.35 |
| 10 | 20.30 | 3.55 | 12.77 |
| 11 | 18.45 | 3.90 | 14.19 |
| 12 | 16.92 | 4.26 | 17.01 |
| 13 | 15.62 | 4.61 | 18.44 |
| 14 | 14.50 | 4.97 | 19.86 |
| 15 | 13.53 | 5.32 | 21.28 |
| 16 | 12.69 | 5.67 | 22.70 |
| 17 | 11.94 | 6.03 | 24.12 |
| 18 | 11.28 | 6.38 | 25.54 |
| 19 | 10.68 | 6.74 | 26.96 |
| 20 | 10.15 | 7.09 | 28.37 |
| 21 | 9.67 | 7.45 | 29.79 |
| 22 | 9.23 | 7.80 | 31.21 |
| 23 | 8.83 | 8.16 | 32.63 |
| 24 | 8.46 | 8.51 | 34.05 |
| 25 | 8.12 | 8.87 | 35.47 |
| 26 | 7.81 | 9.22 | 36.89 |
| 27 | 7.52 | 9.58 | 38.31 |
| 28 | 7.25 | 9.93 | 39.72 |
| 29 | 7.00 | 10.29 | 41.14 |
| 41 | 4.95 | 14.54 | 42.56 |
| 48 | 4.23 | 17.02 | 68.10 |
| 51 | 3.98 | 18.09 | 72.35 |
| 68 | 2.99 | 24.12 | 96.47 |
| 101 | 2.01 | 35.82 | 143.29 |

Table 28 Print dots to characters per inch and points

## Font Size and Spacing command interactions

There are interactions between some of the following commands and some of the legacy font selection commands. These interactions need to be considered when developing a application for this printer.

This printer uses a font rendering engine that relies on the font to provide character size and spacing information. Unfortunately, legacy applications assume all characters are the same and that the character size and spacing is fixed. To force the characters rendered by the font rendering engine to conform to legacy modes of operation, some post generation processing is performed to reposition the characters into a fixed size cell.

The set minimum character height and width ([ESC] + P and [ESC] + p ), the set character spacing ([ESC] $+\mathrm{I},[\mathrm{ESC}]+\mathrm{i},[\mathrm{ESC}]+\mathrm{J}$ and $[E S C]+\mathrm{j}$ ), the set minimum line spacing ( $[E S C]+\mathrm{V}$ and $[E S C]+\mathrm{v}$ ), and the legacy font select and spacing commands all interact.

The set minimum character height and width ([ESC] + P and [ESC] + p ) commands, set character size but in two different ways. In most systems a character point size refers only to the line spacing and indirectly to the character height. That is also true here. The vertical character height referenced in these commands refer to the character height including the white space between lines. The horizontal character width is defined by the font. Normally only the character height would be specified and the width would be defined by the font and that's how these commands work if the width is defined as zero. If the width is defined as zero this is used as a flag to the printer to generate characters as defined by the font and use the character width returned by the font. In effect the vertical point size passed to the font rendering engine is the same as the horizontal value. The added effect of the width being passed as zero is that any enforced horizontal spacing is disables. IE the effect of the [ESC] $+\mathrm{I},[\mathrm{ESC}]+\mathrm{i},[\mathrm{ESC}]+\mathrm{J}$ and [ESC] + $j$ commands are disabled. If the width is not zero, the [ESC] + l, [ESC] + i , [ESC] $+J$ and [ESC] + $j$ remain in effect and only the resulting character size is changed, the horizontal spacing is not changed.

The legacy [ESC] ! <n> select the print mode effectively issues a set minimum character height and width command followed by a set character spacing command without effecting the pseudo fixed spacing flag.

The pseudo fixed spacing flag is a further complication required for dealing with fonts that are not truly fixed pitch. In some cases a fixed pitch font will have more than one character size depending on what the character is used for. This generally only affects Asian fonts where the ideograms are generally twice as wide as Latin characters. In fixed spacing mode, the printer will put the rendered character at whatever spacing is requested even if they don't fit. If the character is too big, it will overlap the previous and next character. To allow a fixed pitch operation that deals with small and large fixed pitch character, the printer has a pseudo-fixed pitch flag that will increase the spacing in multiples of the requested spacing until it fits.

The following table lists the commands and how they interact.

| Command | Zero | Character width | Character height | Cell Width | Pseudo Fixed pitch flag |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{P},} \\ & {[\mathrm{ESC}]+\mathrm{p}} \end{aligned}$ | Width 0 | Same as Height | From command | From Font | No effect |
| $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{P},} \\ & {[\mathrm{ESC}]+\mathrm{p}} \end{aligned}$ | Width <br> Not Zero | From <br> Command | From command | Based on set character spacing command | Will be used if previously set and character spacing is not being defined by the font |
| $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{I},} \\ & {[\mathrm{ESC}]+\mathrm{i}} \end{aligned}$ | Value 0 | No effect | No effect | From Font | Set Off but has no effect |
| $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{I},} \\ & {[\mathrm{ESC}]+\mathrm{i}} \end{aligned}$ | Value <br> Not zero | No effect | No effect | From <br> Command | Set Off |
| $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{J},} \\ & {[\mathrm{ESC}]+\mathrm{j}} \end{aligned}$ | Value 0 | No effect | No effect | From Font | Set On but has no effect |
| $\begin{aligned} & {[\mathrm{ESC}]+\mathrm{J},} \\ & {[\mathrm{ESC}]+\mathrm{j}} \end{aligned}$ | Value <br> Not zero | No effect | No effect | A multiple of the value defined by the command | Set On |
| [ESC]I <n> |  | From POR.INI definition | From POR.INI definition | As defined by command | Will be used if previously set. |

Table 29 Scalable font command interactions

| Function | Set minimum character height and width in points. | All |
| :--- | :--- | :--- |
| ASCII | $[E S C]+P<W><h>$ |  |
| Hexadecimal | 1 BH 2 BH 50 H |  |
| Decimal | $<27><43><80>$ |  |
| Range | $\mathrm{w}=0,4-72 \quad \mathrm{~h}=4-72$ |  |

The [ESC] + P command will set the minimum character width or height based on "w" for the width and " $h$ " for height, where " $w$ " and " $h$ " are in points, defined as $1 / 72^{\text {nd }}$ of an inch increments.

If the character width is set to zero, the height will be used for the width and proportional spacing will be used.

NOTE: The set pitch command will take precedence unless this command selects 0 for the width.

| Function | Set minimum character height and width in $1 / 4$ points. |  |
| :--- | :--- | :--- |
| ASCII | $[E S C]+p<w><h>$ |  |
| Hexadecimal 1 BH 2 BH 70 H  <br> Decimal $<27><43><112>$  <br> Range $\mathrm{w}=0,16-255$ $\mathrm{~h}=16-255$ |  |  |

The [ESC] + $p$ command will set the minimum character width or height based on " $w$ " for the width and " $h$ " where " $w$ " and " $h$ " are in $1 / 4$ points or $1 / 288^{\text {th }}$ of an inch increments. This approximates setting characters by dot.

If the character width is set to zero, the height will be used for the width and proportional spacing will be used.


NOTE: The set pitch command will take precedence unless this command selects 0 width.

Function Set Character spacing in points.

The [ESC] + I command will set the character spacing in points, where one point is defined as $1 / 72^{\text {nd }}$ of an inch. This command will force mono-space printing. It will override any character spacing set by the set character height and width commands defined above. This spacing will be enforced until deactivated by setting the value to 0 or if the set character height and width commands use a 0 for the width indicating proportional spacing should be used. This command differs from the [ESC] + J command in that all characters are centered on the fixed cell size. It the character is too big for the cell, it may overlap the previous and next character. The character size is not adjusted to fit the cell.

If $\mathrm{d}=0$ variable spacing is selected.
NOTE: If the current character size is too large for the selected spacing, the characters will overlap. Variable spacing is recommended.

| Function | Set Character spacing in $1 / 4$ points. | All |
| :--- | :--- | :--- |
| ASCII | $[\mathrm{ESC}]+\mathrm{i}<\mathrm{d}>$ |  |
| Hexadecimal | 1 BH 2 BH 69 H |  |
| Decimal | $<27><43><105>$ |  |
| Range | $d=0,16-255$ |  |

The [ESC] + $i$ command will set the character spacing in points, where $1 / 4$ point is defined as $1 / 288^{\text {th }}$ of an inch. This command will force mono-space printing. It will override any character spacing set by the set character height and width commands defined above. This spacing will be enforced until deactivated by setting the value to 0 or if the set character height and width commands use a 0 for the width indicating proportional spacing should be used. This command differs from the [ESC] + j command in that all characters are centered on the fixed cell size. It the character is too big for the cell, it may overlap the previous and next character. The character size is not adjusted to fit the cell.

If $\mathrm{d}=0$ variable spacing is selected.


NOTE: If the current character size is too large for the selected spacing, the characters will overlap. Variable spacing is recommended.

| Function | Set Character spacing in points with adjustment. |
| :--- | :--- | :--- |
| ASClI | $[E S C]+J<d>$ |
| Hexadecimal | 1BH 2 BH 4 AH |
| Decimal | $<27><43><74>$ |
| Range | $d=0,4-72$ |

The [ESC] $+J$ command will set the character spacing in points, where one point is defined as $1 / 72^{\text {nd }}$ of an inch. This command will force mono-space printing. It will override any character spacing set by the set character height and width commands defined above. This spacing will be enforced until deactivated by setting the value to 0 or if the set character height and width commands use a 0 for the width indicating proportional spacing should be used. This command differs from the [ESC] + I command in that if the character is too large for the cell, the cell will be expanded in multiples of $<d>$ until the character fits.

If $d=0$ variable spacing is selected. However, note that the cell adjustment flag will remain set and if legacy commands are used they will allow the cell to be expanded.


NOTE: If the current character size is too large for the selected spacing, the cell size will be expanded

| Function | Set Character spacing in points with adjustment. | All |
| :--- | :--- | :--- |
| ASCII | $[\mathrm{ESC}]+\mathrm{j}<\mathrm{d}>$ |  |
| Hexadecimal | 1 BH 2 BH 6 AH |  |
| Decimal | $<27><43><106>$ |  |
| Range | $\mathrm{d}=0,16-255$ |  |

The [ESC] + $j$ command will set the character spacing in points, where $1 / 4$ point is defined as $1 / 288^{\text {th }}$ of an inch. This command will force mono-space printing. It will override any character spacing set by the set character height and width commands defined above. This spacing will be enforced until deactivated by setting the value to 0 or if the set character height and width commands use a 0 for the width indicating proportional spacing should be used. This command differs from the [ESC] + i command in that if the character is too large for the cell, the cell will be expanded in multiples of <d> until the character fits.

If $d=0$ variable spacing is selected. However, note that the cell adjustment flag will remain set and if legacy commands are used they will allow the cell to be expanded.

NOTE: If the current character size is too large for the selected spacing, the characters will overlap. Variable spacing is recommended.

| Function | Set minimum Line Spacing in Points | All |
| :--- | :--- | :--- |
| ASCII | $[\mathrm{ESC}]+\mathrm{V}<\mathrm{d}>$ |  |
| Hexadecimal | 1 BH 2 BH 56 H |  |
| Decimal | $<27><43><86>$ |  |
| Range | $d=0,4-72$ |  |

The [ESC] + V command will set the line spacing in points, where one point is defined as $1 / 72^{\text {nd }}$ of an inch.

If $\mathrm{d}=0$ variable spacing is selected.


NOTE: This is the minimum spacing. If the character height setting requires a larger spacing, the character height will override this setting.

| Function | Set minimum Line Spacing in $1 / 4$ Points | All |
| :--- | :--- | :--- |
| ASCII | $[E S C]+v<d>$ |  |
| Hexadecimal | 1 BH 2 BH 76 H |  |
| Decimal | $<27><43><118>$ |  |
| Range | $d=0,16-255$ |  |

The [ESC] + v command will set the line spacing in $1 / 4$ points, where $1 / 4$ point is defined as $1 / 288^{\text {th }}$ of an inch.

| ASCII | [ESC] $+\mathrm{v}<\mathrm{d}>$ |
| :--- | :--- |
| Hexadecimal | 1 BH 2 BH 76 H |
| Decimal | $<27><43><118>$ |
| Range | $\mathrm{d}=0,16-255$ |

If $\mathrm{d}=0$ variable spacing is selected.


NOTE: This is the minimum spacing. If the character height setting requires a larger spacing, the character height will override this setting.

| Function | Set stroke font brush size. |
| :--- | :--- |
| ASCII | $[\mathrm{ESC}]+\mathrm{B}<\mathrm{W}>$ |
| Hexadecimal | 1 BH 2 BH 42 H |
| Decimal | $<27><43><66>$ |
| Range | w $=0,6-200$ |
| Description | The [ESC] + B command will set brush stroke percentage for stroke fonts. <br>  <br>  <br> If the brush size is set to zero the font design stroke width will be used. |

Values from 6 to 200 represent 0.4 to $12 \%$ of the em-width of the font. The default for most fonts is about 3\%. The Model 9000 using the GB18030 font supplied by TransAct Technologies produces the best characters with a brush size of about 100.

Note: The default value for the Brush stroke may be set in the POR.INI file.

Function Redefine Legacy Font definitions.
[ESC] + r < ID > < FontID ><Horz><Vert><Spacing>
Hexadecimal 1BH 2BH 74H
Decimal <27> <43> <116>
Description The [ESC] + r command will allow the legacy fonts defined in the POR.INI file to be dynamically redefined.

The ID is the legacy font ID

| Epson Fonts | ID | Ithaca Mode <br> Fonts | ID | Ithaca Mode <br> Barcodes | ID | Ithaca Mode <br> OCR | ID |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Epson1 | 0 | PcOS1 | 0 | Bar Code1 | 4 | OCR | 7 |
| Epson2 | 1 | PcOS2 | 1 | Bar Code2 | 5 |  |  |
| Epson3 | 2 | PcOS3 | 2 | Bar Code3 | 6 |  |  |
|  |  | PcOS4 | 3 |  |  |  |  |

Table 30 Legacy font definition ID's
The Font ID is the logical font assignment in the POR.INI file where 0-99 refer to scalable fonts and 100-199 refer to bitmap fonts.

The Horz and Vert value are the horizontal and vertical size of the font in $1 / 8$ points.
Spacing is the absolute spacing in dots. If this is 0 the font definition is used for the spacing.

Note: The default value for the Brush stroke may be set in the POR.INI file.

ASCII [ESC][P<n>
Hexadecimal 1BH 5BH 50H <n>
Decimal <27> <91> <80> <n>
IPCL \&\%F1, \&\%F2, \&\%F3, \&\%F4, \&\%F5, \&\%F6, \&\%F7
EPOS [ESC][SP] <n>
Description The [ESC][ $P<n>$ command sets character per inch print pitch to <n>. The printer resolution limits the exact print pitch. The following table lists the exact pitch for various values on

| $<$ n> | Resulting <br> Characters <br> per Inch |  | LPCL | Resulting <br> Characters <br> per Inch | IPCL |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table 31 Character Pitch

This command disables any right-side spacing set by the [ESC] V command. It enforces this spacing on the current font selection even if the character is too large for the spacing. In addition, when font changes are made, the character pitch is maintained.

## Unicode

As computer systems started to address more and more international environments, the classic ASCII standard with code pages became unworkable. Several competing systems were developed. However it was clear that a standard needed to be developed. In 1991 Version 1.0 of the Unicode standard was developed, to standardize how and where characters are to be addressed in an expanded addressing scheme. In 2006 Version 5.0 of the Unicode standard was published and generally accepted. The Model 9000 follows this standard for character placement and encoding and Unicode addresses from 0 to 1114111 ( $0 \times 00$ to 0x010FFFF) are supported by the Model 9000 Printer.

Note: If a custom font is used that is not in Unicode order, the order of the font will be used as if it were in Unicode order. Any subsequent character mappings will assume to font is in Unicode order and may not produce the desired effects.

## Unicode Encoding

The Model 9000 Printer supports Unicode character addressing using Unicode Transform Format or UTF as defined in the Version 5.0 Unicode Specification. There are several forms of UTF encoding, UTF32 big and little-endian, UTF16 big and little endian and UTF8.

## UTF-32

Note: UTF32 support is optional in the Model 9000.
When UTF32 firmware is installed all print information in the printer will be stored as a 32 bit value. This includes graphics. As this will make stored graphics and logos much larger, UTF32 is supported as an optional firmware load.

UTF-32 is a straight forward although not very efficient way to access characters above 255. UTF-32 essentially sends four 8 -bit bytes that form a 32 -bit address to access the desired character. Basic UTF-32 does not define the byte order. If you wish to use UTF-32 and allow the printer to determine the byte order, you must send the byte order mark (BOM) (0x0000FEFF) before you send any characters. It is difficult to prevent loss of byte order synchronization with UTF32 however, sending the BOM periodically can sometimes resynchronize the 8bit byte to the 32bit address. If UTF-32 is selected, all data sent to the printer must be 32 bits. All commands and command parameters are also 32 bit, however only values between 0 and 255 are valid for command processing. This makes UTF32 rather inefficient.

UTF-32BE uses the big-endian method of sending the four bytes. This method sends the high byte first and then the low byte. It is not required to send the byte order mark (BOM) (0x0000FEFF) for the correct byte order to be initialized. Sending the BOM in big-endian would be as follows:

0x00 0x00 0xFE 0xFF

UTF-32LE uses the little-endian method of sending the four bytes. This method sends the low byte first and then the high byte. It is not required to send the byte order mark (BOM) (0x0000FEFF) for the correct byte order to be initialized. Sending the BOM in little-endian would be as follows:

0xFF 0xFE 0x00 0x00

## UTF-16

UTF-16 is the most straightforward way to access characters above 255. UTF-16 essentially sends two 8-bit bytes that form a 16-bit address to access the desired character. Basic UTF-16 does not define the byte order. If you wish to use UTF-16 and allow the printer to determine the byte order, you must send the byte order mark (0xFEFF) before you send any characters. To prevent loss of byte order synchronization, you should periodically send the byte order mark to resynchronize the printer with your application. If UTF-16 is selected, all data sent to the printer must be 16 bits. All commands and command parameters are also 16 bit, however only values between 0 and 255 are valid. Extended addressing uses surrogate pairs to encode values above 0xFFFF.

| Scalar Value | UTF-16 |  |
| :---: | :---: | :---: |
| xxxxxxxxxxxxxxxx | xxxxxxxx xxxxxxxx |  |
| 000uuuuuxxxxxxxxxxxxxxxx | 110110wwwwxxxxxx | 110111xxxxxxxxxx |

Note: wwww = uuuuu - 1 and uuuuu may not be larger than 10000
Table 32 UTF-16 bit field definitions
Unicode Extended UTF16 Encoding Example

## 3 Byte output Example

Hex Character Code: 0x00010302


Figure 74 UTF-16 encoding example

## UTF-16

With UTF16 values from 0x0000000000 to 0x0000D7FF and 0x0000E000 to $0 x 0010 F F F F$ may be represented Values from 0x0000D800 to 0x0000DFFF and above $0 x 0010 F F F F$ are not valid and in fact are not valid for any characters in Unicode rev 5.0 regardless of encoding.

UTF-16BE uses the big-endian method of sending the two bytes. This method sends the high byte first and then the low byte. It is not required to send the byte order mark (0xFEFF) for the correct byte order to be initialized. Sending the BOM in big-endian would be as follows:

0xFE 0xFF
UTF-16LE uses the little-endian method of sending the two bytes. This method sends the low byte first and then the high byte. It is not required to send the byte order mark (0xFEFF) for the correct byte order to be initialized. Sending the BOM in big-endian would be as follows:

## 0xFF 0xFE

## UTF-8

UTF-8 uses a Multiple Byte Character Sequence (MBCS) to identify the desired Unicode character. This encoding method is less straightforward but preserves some of the 8-bit character of ASCII encoding.. This method uses unique bit sequences at the MSBs of a byte to determine its location and meaning within the MBCS encoding. See the table below for more information. If UTF-8 is selected all data sent to the printer must be encoded. All command parameters over 127 must be encoded in UTF-8.

## UTF-8TXT

UTF-8TXT uses a Multiple Byte Character Sequence (MBCS) to identify the desired Unicode character. This encoding method is identical to UTF-8 except commands and command parameters over 127 are not UTF-8 encoded. They must be sent unmodified as 8 -bit values.


UTF-8TXT is probably the easiest mode to use. It allows normal 8 bit commands and graphics while still supporting the full Unicode character encoding range. Typically Model 9000 Printers are shipped set to this mode.

| Scalar Value | 1 st Byte | 2nd Byte | 3rd Byte | 4th Byte |
| :---: | :---: | :---: | :---: | :---: |
| 000000000000000 0xxxxxxx | 0xxxxxxx |  |  |  |
| $00000000000 y y y ~ y y x x x x x x$ | 110yyyyy | 10 xxxxxx |  |  |
| 0000000 zzzzyyyy yyxxxxxx | 1110 zzzz | $10 y y y y y y ~$ | 10 xxxxxx |  |
| 00uuuuu zzzzyyyy yyxxxxxx | 11110uuu | 10uuzzzz | $10 y y y y y y ~$ | 10 xxxxxx |

Table 33 UTF-8 bit field definitions

Note: Where values from 0x001FFFFF may be encoded, only values up to 0x0010FFFF are valid in Unicode 5.0
Note: Where UTF8 supports values greater than 16 bits Unless the UTF32 option al firmware is installed the printer will not support values greater than 65535.

## Unicode UTF8 Encoding Example

3 Byte output Example
Hex Character Code: FA11


Figure 75 UTF-8 encoding example

## Unicode Encoding Control Commands

Function
ASCII
[ESC] + h
Hexadecimal 1BH 2BH 68H
Decimal <27> <43> <104>
Description The [ESC] + h command will put the printer into UTF-32BE character encoding mode of operation. If you wish to access characters above 255, you must select a Unicode encoding such as UTF-32BE.

UTF-16 is the most straightforward way to access characters above 255, however UFT32 does not require Surrogates to address character values greater than 65535.

UTF-32BE uses the big-endian method of sending the four bytes. This method sends the high byte first and then the lower bytes.

Note: UTF32 support is optional in the Model 9000.
Note: Once selected, all information sent to the printer must then use this encoding, even for non-print commands.
Note: When UTF32 firmware is installed all print information in the printer will be stored as a 32 bit value. This includes graphics. As this will make stored graphics and logos much larger, UTF32 is supported as an optional firmware load.

| Function | Initiate Unicode UTF-32LE Encoding | All |
| :--- | :--- | :--- |
| ASCII | $[E S C]+$ I |  |
| Hexadecimal | 1 BH 2 BH 6 CH |  |
| Decimal | $<27><43><108>$ |  |
| Description | The $[\mathrm{ESC}]+$ I command will put the printer into UTF-32LE character |  |
|  | encoding mode of operation. If you wish to access characters above |  |
|  | 255, You must select a Unicode encoding such as UTF-16LE. |  |

UTF-16 is the most straightforward way to access characters above 255, however UFT32 does not require Surrogates to address character values greater than 65535.

UTF-32LE uses the little-endian method of sending the four bytes. This method sends the low byte first and then the higher bytes.

Note: UTF32 support is optional in the Model 9000.
Note: Once selected, all information sent to the printer must then use this encoding, even for non-print commands.
Note: When UTF32 firmware is installed all print information in the printer will be stored as a 32 bit value. This includes graphics. As this will make stored graphics and logos much larger, UTF32 is supported as an optional firmware load.
Function Initiate Unicode UTF-16BE Encoding All

ASCII $\quad[E S C]+\mathrm{H}$
Hexadecimal 1BH 2BH 48H

## Decimal <27> <43> <72>

Description The [ESC] + H command will put the printer into UTF-16BE character encoding mode of operation. If you wish to access characters above 255, you must select a Unicode encoding such as UTF-16BE.

UTF-16 is the most straightforward way to access characters above 255 , sending two 8-bit bytes that form a 16-bit address to access the desired character.

UTF-16BE uses the big-endian method of sending the two bytes. This method sends the high byte first and then the low byte.

Note: Once selected, all information sent to the printer must then use this encoding, even for non-print commands

| Function | Initiate Unicode UTF-16LE Encoding |
| :--- | :--- |
| ASCII | $[\mathrm{ESC}]+\mathrm{L}$ |
| Hexadecimal | 1 BH 2 BH 4 CH |
| Decimal | $<27><43><76>$ |
| Description | The $[\mathrm{ESC}]+$ L command will put the printer into UTF-16LE character |
|  | encoding mode of operation. If you wish to access characters above |
|  | 255, You must select a Unicode encoding such as UTF-16LE. |

UTF-16 is the most straightforward way to access characters above 255 , sending two 8 -bit bytes that form a 16 -bit address to access the desired character.

UTF-16LE uses the little-endian method of sending the two bytes. This method sends the low byte first and then the high byte.

Note: Once selected, all information sent to the printer must then use this encoding, even for non-print commands

Function Initiate Unicode UTF-8 Encoding (MBCS) All
ASCII $\quad[E S C]+M$
Hexadecimal 1BH 2BH 4DH
Decimal <27> <43> <77>
Description The [ESC] + M command will put the printer into UTF-8 character encoding mode of operation. If you wish to access characters above 255, You must select a Unicode encoding such as UTF-8.

UTF-8 uses a Multiple Byte Character Sequence (MBCS) to identify the desired Unicode character. This encoding method is less straightforward. This method uses unique bit sequences at the MSBs of a byte to determine its location and meaning within the MBCS encoding. See the table below for more information.

Note: Once selected, all information sent to the printer must then use this encoding, even for non-print commands

| Scalar Value | 1 st Byte | 2nd Byte | 3rd Byte | 3rd Byte |
| :--- | :--- | :--- | :--- | :--- |
| 00000000 0xxxxxxx | 0xxxxxxx |  |  |  |
| 00000yyy yyxxxxxx | 110yyyyy | 10xxxxxx |  |  |
| zzzzyyyy yyxxxxxx | 1110zzzz | 10yyyyyy | 10xxxxxx |  |
| 000uuuuu zzzzyyyy yyxxxxxx | 11110uuu | 10uuzzzz | 10yyyyyy | 10xxxxxx |

Note: Where values from 0x001FFFFF may be encoded, only values up to 0x0010FFFF are valid in Unicode 5.0
Note: Where UTF8 supports values greater than 16 bits Unless the UTF32 option al firmware is installed the printer will not support values greater than 65535.

| Function | Initiate Unicode UTF-8 Text only Encoding (MBCS) |
| :--- | :--- |
| ASCII | [ESC] + T |

Note: This command also applies to graphic data being sent to the printer. The graphic data is a command and not text. It is not UTF-8 encoded.
Function Initiate Normal 8-bit ASCII Character Encoding All
ASCII [ESC] + A

Hexadecimal 1BH 2BH 41H
Decimal <27> <43> <65>
Description The [ESC] + A command will put the printer into normal character encoding mode of operation. One byte = one character. In this mode international characters must be selected by selecting the appropriate code page for translation.

## Legacy Printer Features that Have Changed

Because this product employs outline and stroke font character generation, support for several legacy features are changed from standard Model 9000 version.

## Barcode enhancements

Barcode support has been enhanced and some features have changed when compared to the iTherm 280

The Model 9000 is capable of more accurate printing of and a greater number of bar code types than previous TransAct printers. Because of these improvements, those bar codes that are supported on other printers may print differently on the Model 9000.
Please see the appropriate bar code printing and option command descriptions for more details.

The iTherm 280 does not support:

- Composite
- Maxi Code
- QR Code
- GS1 Data bar, All varieties
- UCC-EAN128

Other Differences in barcode support:

- Coda bar: 9000 does not show the start/stop codes in HRI, 280/8000 do.
- Code 93: 9000 shows check digit in HRI, 280/8000 do not.
- JAN8: 9000 does not inset HRI in JAN8 barcodes.
- JAN13: 9000 insets HRI in UPC style, all other printers do not.
- PDF417: The iTherm 280 does not align barcodes on the right the M9000 aligns barcodes both on center and right.
- UPC-E: M9000 insets HRI in UPC style, the iTherm 280 does not.


## Graphics

The M9000 supports gray scale printing through the selection of various paper types.
The M9000 supports monochrome, 16 color, 256 color, and 256bit color bitmap files. The iTherm 280 only supported 16 color or monochrome bitmap files.

## Dynamic code page definition

Dynamic code page definition is supported only when in ASCII mode. Unicode is used internally so all source character locations are Unicode addresses.

## USB 2.0

The M9000 supports High and Full speed USB 2.0 operation. The Composite USB mode where Virtual serial and USB Printer support operate concurrently is no longer supported in the standard printer. The USB CDC class of operation is now supported as a configurable option.

## Ethernet

The Ethernet adapter used with the M9000 supports a UDP real time status feature that allows printer connected to the Ethernet link to report status to a single or multiple hosts without having the TCP/IP link open. This allows multiple printers to be tracked in real time independently of the actual printing process.

The Ethernet adapter also supports a subset of the RFC 3805 Printer MIB. This will also allow easier printer status tracking.

## File System

## File System Interface

The Model 9000 provides a file system to support fonts, configuration information, user graphics and macros.

There are a number of commands that are provided to support the file system. In general, files need to be opened for read or write, read from or written to, and then closed. There is a command that will delete a file, as well as print or return a file directory.

TransAct Technologies provides a Windows ${ }^{\circledR}$ based tool that will interact with the Model 9000 and provide a drag and drop interface to the file system.

The file system in the Model 9000 is partitioned into two sections, one for internal system use by the printer, and one for user information.

The system partition is referred to as partition 0 . It is reserved for fonts, configurations and code page files. This partition cannot be deleted or completely erased. The second partition is for all other information. There is a command that will erase all the files in this partition. The partition where files are placed is determined by the three character extension. There is a third RAM file partition that may be used to saving temporary information.

The internal file system allows multiple files to be open concurrently; however, only one file handle is reserved for access by command. Therefore, only one file may be accessed by the host system at a time. You must close any previously open file before you can open another one.

A single file may not be open with two handles. If the file is open internally, you cannot open it externally. For example you can't open an internal font.


Note: TrueType fonts stored in the printer are generally protected by copyrights. To protect the copyright owner, TrueType font files cannot be read from the printer. They can be deleted and as you can't read them, you probably can't replace them.

## File System commands

Function Open File command.
ASCII [ESC] [RS] O < Mode > <space> < Filename ><0>
Hexadecimal 1BH 1EH 4FH
Decimal <27> <30> <79>
Mode Mode of operation " $r$ " for read or " $w$ " for write.
FileName File name from 1 to 30 characters including a three character extension.
Description
The [ESC] [RS]O command will select and open a file for the selected operation. If the file being opened for write exists, the existing file will be overwritten. Note that only one file may be open for external operations at any one time.
The Mode and FileName take the following format and must be null terminated:
r Filename.ext<0>
Valid Modes are:
"r" Read.
"w" Write
"w+" Write Append (Future enhancement)
"ram" open a RAM file for write.
File Extensions are any three characters. The following are predefined and reserved for internal use.

| Extension | Partition 0= System 1= User | Definition |
| :---: | :---: | :---: |
| .udf | 1 | Undefined macro type |
| .mac | 1 | Command Macro |
| .img | 1 | Graphic image. (Internal format) |
| .bgp | 1 | Bitmapped internal graphic |
| .chr | 1 | User Character definition |
| .cfg | 0 | configuration. |
| .ttf | 0 | TrueType font |
| .ccc | 0 | compressed stroke font |
| .btf | 0 | Bitmap font definition |
| .cpm | 0 | code page map. |
| .bmp | 1 | bitmap graphic file |
| .gph | 1 | raster graphic file. |
| .ini | 0 | System information file |
| .fcg | 0 | Field Configuration File |
| .upd | 0 | System Update file |
| .sys | 0 | Load image |
| .sy | 0 | Compressed load image. |

Note: All other file extensions will be placed in Partition 1 (user space)
Table 34 System file extensions

| Function | Return Free space for the Open File. |
| :--- | :--- | :--- |
| ASClI | [ESC] [RS] S |
| Hexadecimal 1 BH 1 EH 53 H <br> Decimal $<27><30><83>$ |  |
| Description The [ESC] [RS]S command will return an identifier byte and 4 additional <br> bytes representing a 32 bit value (LSB First) representing the amount of free space in  <br> the partition containing the open file.  |  |

The format is as follows:
$\mathrm{S}<\mathrm{B}_{7-0}><\mathrm{B}_{15-8}><\mathrm{B}_{23-16}><\mathrm{B}_{31-24}>$

| Function | Return Free space for this partition. |
| :--- | :--- | :--- |
| ASClI $[E S C][R S] s<n>$ |  |
| Hexadecimal 1 BH 1 EH 73 H <br> Decimal $<27><30><115>$ <br> Where $n=$ The partition |  |
| Description The [ESC] [RS]s command will return an identifier byte and 4 additional <br> bytes representing a 32 bit value (LSB First) representing the amount of free space in  <br> the partition.  |  |

The format is as follows:
$S<B_{7-0}><B_{15-8}><B_{23-16}><B_{31-24}>$

| Function | Close File command. | All |
| :--- | :--- | :--- |
| ASClI | [ESC] [RS] C |  |
| Hexadecimal | 1 BH 1EH 43H |  |
| Decimal | $<27><30><67>$ |  |
| Description | The [ESC] [RS]C command will close the currently open file. |  |

Function Close All Files command. All
ASCII [ESC] [RS] K

Hexadecimal 1BH 1EH 4BH
Decimal <27> <30> <75>
Description The [ESC] [RS]K command will close the font system and close all currently open files. Internal fonts will be reopened automatically if used.

| Function | Delete File command. |
| :--- | :--- |
| ASCII | [ESC] [RS] $<$ Filename $><0>$ |
| Hexadecimal | 1 BH 1 EH 44 H |
| Decimal | $<27><30><68>$ |
| FileName | File name from 1 to 30 characters including a three character extension, |
|  |  |
| null terminated. |  |


| Function | Set/Clear File Attributes command. |
| :--- | :--- |
| ASCII | $[\mathrm{ESC}][\mathrm{RS}] \mathrm{A}<$ Attbs $><$ space $><$ Filename $><0>$ |
| Hexadecimal | 1 BH 1 EH 41 H |
| Decimal | $<27><30><64>$ |
| Attbs | File attributes to modify. |
| FileName | File name from 1 to 30 characters including a three character extension. |

Each file has several attributes associated to it. They include S, R, and H.

| Attribute | Syntax | Name | Use |
| :---: | :---: | :---: | :--- |
| S | + S or $-S$ | System | This is a system file. |
| R | + R or -R | Read Only | This file cannot be erased or modified. |
| H | + H or -H | Hidden | This file is hidden and not displayed in |
|  |  |  | the directory listing. |

Note: Attributes can be combined, however, each needs to have the + or - as a prefix.

Note: You cannot make TrueType fonts readable by command.
To allow these attributes to be set and cleared, the [ESC][RS]A command can be used. The format is as follows:
[ESC][RS]A-R-S FileName<0>
This command will remove the Read only and System attributes from the referenced file.

| Function | Return the last file command status. | All |
| :--- | :--- | :--- |
| ASCII | $[E S C][R S] ?$ |  |
| Hexadecimal 1 BH 1EH 3FH <br> Decimal $<27><30><63>$ |  |  |

The [ESC][RS]? Command requests the file system to return the status of the last file operation.

This command returns an identifier byte, followed by 2 bytes indicating the status results of the last file command. The format will be as follows:
?<Status><Details> or 3F, (47 or 42), <Details>
Where:
Status = ‘G’ for success and 'B’ for Failure Detail = Detailed status as a binary byte with bit definitions as follows:

| Bit | Hex | Decimal | Function |
| :---: | :---: | :---: | :--- |
| 0 | 01 | 1 | File Open |
| 1 | 02 | 2 | File in Write Mode |
| 2 | 04 | 4 | The Read response is shorter than requested <br> and EOF has been encountered. |
| 3 | 08 | 8 | The file is already open. |
| 4 | 10 | 16 | The file system has no space for the preceding <br> operation. Could be out of Flash or out of Buffer <br> space. |
| 5 | 20 | 32 | A write operation has been attempted to a read <br> only file. |
| 6 | 40 | 64 | File requested was not found |
| 8 | 80 | 128 | An error has Occurred. Other bits may be set <br> that give additional detail. (This bit determines <br> the G or B status in the previous byte) |

Table 35 File system status bit definitions

| Function | Return File CRC command. All |
| :---: | :---: |
| ASCII | [ESC] [RS] G <Filename><0> |
| Hexadecimal | 1BH 1EH 47H |
| Decimal | <27> <30> < $71>$ |
| FileName | File name from 1 to 30 characters including a three character extension, null terminated. |
| Description | The [ESC] [RS]G command will return the CRC of the specified file. |
|  | Note: If the file does not exist a CRC will be reported as 0 and is not valid, the last file system status result will be updated. |



| Function | Generate and return a file directory report. | All |
| :--- | :--- | :--- |
| ASCII | $[E S C][R S]$ I |  |

Hexadecimal 1BH 1EH 49H
Decimal <27> <30> <73>
Description The [ESC] [RS]I command requests that a formatted text directory be returned from the printer. Each line is null terminated.

| Function | Erase all files in a partition | All |
| :--- | :--- | :--- |
| ASCII | $[\mathrm{ESC}][\mathrm{RS}] \mathrm{X}<\mathrm{p}>$ |  |
| Hexadecimal | 1 BH 1 EH 58 H |  |
| Decimal | $<27><30><88>$ |  |
| $<$ p $>$ | selects the partition. $0=$ System, $1=$ User. |  |

Description The [ESC] [RS]X command requests that the selected partition be reformatted. Reformatting the system partition $<0>$ is not recommended, as it will erase all fonts and render the printer unusable.
Function De-fragment the file system. All
ASCII [ESC][RS] F

Hexadecimal 1BH 1EH 46H
Decimal <27> <30> < 70 >
Description The [ESC] [RS]F command forces the file system to go through the file system and clean up deleted file sectors. All sectors flagged for deletion are actually erased and consolidated when this command is issued.

Note: File space is not necessarily freed up by a file delete. Sectors may be marked for deletion but still be present but inactive in the file system. These sectors take up flash space. Each cluster has a fixed number of sectors, and if the number of deleted sectors in a cluster exceed a predefined threshold, the cluster is de-fragmented automatically. This command forces all clusters to be de-fragmented
Function Verify files. All
ASCII [ESC] [RS] V

Hexadecimal 1BH 1EH 56H
Decimal <27> <30> <86>
Description The [ESC] [RS]V opens and reads the VERIFY.CFG file. This file contains a list of all files that are to be validated in the printer and the expected CRC of the file. If all the files verify, this command will return VG followed by its 2 byte CRC. If any of the files do not verify, the command will return VB followed by its 2 byte CRC.

For example the file might look like this:
Por.ini 0x06FF
Only the Por.ini file will be checked in this example.
An additional and optional feature of this command is that it can verify the CRC of the operating firmware. By adding "Firmware" as a file name, this command will recalculate the Firmware CRC and compare it to the master value. If the recalculation does not match the master value, this command will return a failed response. The file would be as follows to add the Firmware check. By using the master value, this file need not be updated if the firmware is updated.

Por.ini 0x06FF
Firmware
By knowing the CRC of the Verify.cfg file, the host application can verify that all the other files are correct (and optionally the firmware) without knowing anything about the other files of firmware.


Note: The typical printer is not shipped with a Verify.cfg file.
Note: This command is not performed as a condition of normal operation.

It is up to the host application to refuse to use the printer if this command returns a fail to verify status.
Note: if the Verify.cfg file is not present, the verify command will return VB and a 0 CRC.

## File system Support

The Model 9000 Printer supports a file system to support TransAct Technologies fonts and allow the user to load and link custom fonts.

The POSFile tool provides a Windows interface to the printer and will allow fonts and configuration files to be loaded into the printer. This tool can read and write the POR.INI file, however the TransAct supplied fonts cannot be read but can be deleted from the printer.

TrueType ${ }^{34}$ and Compressed Stroke Fonts ${ }^{35}$ are supported by the Model 9000 Printer. User-defined TrueType fonts many be defined and loaded into the printer, however, once in the printer they cannot be extracted. (This protects the copyrights on the font.)

[^21]
## POR.INI file

The POR.INI file is used to control how fonts are encoded, named, identified and linked, as well as allowing how the font to be printed is controlled. In addition the POR.INI file defines how each legacy font is defined and printed. It also controls several other features and functions.

The POR.INI file is divided into sections:

- [encoding]

This section defines how the printer encodes the character set. It may be ASCII with code page, or Unicode. If ASCII is selected the default code page is selected and/or defined in this section.

- [font]This section defines how the scalable fonts are named and generated. You can control the font cache size and partitions, the Hinting, link fonts and font abstractions.
- [bmfont]

This section defines and abstracts any bitmap font definitions.

- [Legacy]

This section defines how the previously defined fonts are used to generate legacy fonts for each emulation.

The following is an example of the POR.INI file:

```
; Default System Configuration.PE9000-1.08
[encoding]
mode = UTF8TXT
;NOTE: A code page is only used in ASCII mode.
;To specify a code page, use one of the following forms:
CodePage = 437
;CPFile = CP8959-1.cpm
;To remap Unicode characters, define a UniRemap.cpm file.
;UniMapfile = UniRemap.cpm
[font]
;Optionally specify the Cache Partitions
; Fontcache = 320,256,64
;True Type font hinting may be disabled by setting Nohint to 1
; Nohint = 0
;True Type font line spacing fit; 1-Min 2-Typ, 3-Max
;TTFit = 2
; Extra Character Bolding
Bolding = 400,200
; Specify Linked fonts starting with LinkFont1.
;LinkFontl will be searched first.
;You may specify up to 8 linked fonts.
;if Link Fonts are defined, they will be Font0.
LinkFont1 = TactSYM.ttf
LinkFont2 = TactAria.ttf
LinkFont2 = TactWGL_M.ttf
LinkFont3 = TactWGL V.ttf
LinkFont4 = TactGB18030.ccc
;From 1 to 99 fonts may be defined
Font1 = TactSYM.ttf
Font2 = TactWGL M.ttf
Font3 = TactGB18030.ccc
```

```
Font4 = TactOCR.ttf
Font5 = TactWGL V.ttf
;The brush size effects only stroke fonts.
Brush = 100
[legacy]
;EmulationMode = Font,Horizontal,Vertical,Width.
; Where:
; If Font = 0 Use Linkfont else 1-4 above.
; If Font is 100 or greater use BMFont (Font - 100). BMFonts only used
Width.
; Horizontal and Vertical are in 8th points, Width in Dots.
; See the Programmers guide for more information.
Epson1 = 0,56,72,10
Epson2 = 0,64,72,14
Epson3 = 0,50,60,8
PcOS1 = 0,52,72,10
PcOS2 = 0,60,72,14
PcOS3 = 0,80,80,18
PcOS4 = 0,80,80,20
PcOSOCR = 4,80,80,20
BarC1 = 0,56,72,10
BarC2 = 0,64,72,14
BarC3 = 0,50,60,8
; Up to 8 user defined fonts may be defined.
USRFont1 = 100,9,24,10
USRFont2 = 101,12,24,13
USRFont3 = 4,56,72,0
USRFont4 = 4,64,72,0
[gtech]
[bmfont]
;There may be up to 8 bitmap fonts.
;Bitmap fonts are fixed sizes and have no options
BMFont0 = chr10x24.bft
BMFont1 = chr13x24.bft
BMFont2 = chr15x24.bft
BMFont3 = ocr16x24.bft
[usb]
;USB Driver
;Usbclass may be 255, 7, GSA, 108 ...
;Default is class 7 (Printer device)
Usbclass = 7
;;UsbSpeed may be 0 for Full or 1 for High
Usbspeed = 1
;USB Plug and Play Print driver. 1 = PnP Active.
;USB_PnP = 0
[options]
; to remove white space set Linespace to 0
;Linespace = 0
```

Font1 through Font99 may be defined, and the font number is the alias used by the set font command, e.g. Font23 is selected by doing a select font 23 command. Font 0 is reserved for selecting the linked font.

The printer may contain one default linked font. A linked font is a method of allowing the user to replace characters in a standard font with custom characters, described in more detail in an earlier section. The POR.INI file is one way of defining a linked font. In the
above POR.INI file link the link font consists of User, TactWGL, and the TactGB18030 fonts. When a character is to be printed, the user font will be searched followed by TactWGL and then the TactGB18030 font. The first font containing the character will define the character.

Bitmap fonts are not recommended, they should only be used if an exact bitmap is required. Bitmap fonts are not scalable like TrueType fonts, only the normal 2X, 3X and so on scaling is available. TransAct Technologies can upon request and signing an NDA provide tools to allow the customer to develop their own bitmap fonts. These fonts must be in Unicode order but only need support the specific characters needed in the font. NOTE: When loaded and made available the legacy select font commands should select the bitmap font by adding 100 to the font ID. For example to use BMFont0, select font 100 in the Legacy font definition. (Note: Only the font ID is used from the legacy font definition if a bitmap font is selected.)

Legacy font definitions define the Size, spacing, font, quality and spot size to be used to generate a legacy font. For example the $\mathrm{PcOS}[\mathrm{esc}] \mathrm{I}<0>$ font select command will select PcOS1 font. (Note that the font select and the Font ID are offset by one.) The font size is defined in $1 / 8^{\text {th }}$ point units. This gives a lot of control of the size. Because the Model 9000 printer prints discreet dots that are relatively large (from a font point of view), changes in character size will appear to jump. That is small changes in size will not appear to alter the character and then a $1 / 8^{\text {th }}$ point change will make a dramatic change. If you wish to change the font and/or the character size select a size in the middle of the step. Even though small changes don't appear to have an effect, small changes do occur in the font generation and a value in the middle works best. The $X$ and $Y$ Spot size effects how the characters are generated. The spot size is equivalent to selecting a paint brush. A small spot is a small paint brush and therefore requires a lot more brush strokes to form the character. As the dots printed by the printer are always the same size, defining a small spot will cause more dots to be used to form the character. Depending on how the font was defined, it may be advantageous to select a large brush size and in effect reduce the number of dots in the character. There are no real guidelines for selecting Spot size. You have to experiment with it until you get acceptable results with your font. This value can generally be set to nominal with most fonts. (Nominal is 100).

## Model 9000 Extended Printer Control

The Model 9000 printer has a number of Extended Control commands that allow an application to better track and maintain the printer. These commands are in all emulations ${ }^{36}$.

## Model 9000 Internal Logs

The printer maintains a log of printer activity. This activity may be returned to the host with the [ESC]~ T command. This command returns a ~T followed by four binary bits that make up a 32 bit unsigned integer. The description of the command below describes the format in full.

The printer also contains a number of commands that will force the printer to perform specific functions to help maintain the printer or print information about the printer. The functions available are:

1) Print Current Configuration
2) Print current log totals

Note: Each of these commands follow the ESC~ or ESCy format. Other functions are performed by these basic commands. Do not attempt to use any undocumented version of these commands. The extended diagnostics commands may affect the print quality and performance of the printer. In some cases, the commands may degrade the performance of the print cartridge or mechanism.

[^22]| Function | Read and Return Totals |  |  |
| :---: | :---: | :---: | :---: |
| ASCII | [ESC] ~ T <n> |  |  |
| Hexadecimal | 1BH 7EH 54H <n> |  |  |
| Decimal | <27> <126> <84> <n> |  |  |
| Description | This command returns the current statistics for parameter $n$. The value returned will be $\sim \mathrm{T}<\mathrm{n}>$ with the next 4 bytes being an unsigned integer. For example: |  |  |
|  | [ESC]~T<1> Request cover open count <br> $\sim$ T<1><0><0><1><100> or $256+100$ or 356 cover opens |  |  |
| Returns: |  |  |  |
| Values of $n$ | Request: | 16 | Configuration Faults |
| 0 | Not Used | 17 | Cash Drawer Opens |
| 1 | Not Used | 18 | Auto Cutter Cycles |
| 2 | Not Used | 19 | Not Used |
| 3 | Cover Opens | 20 | Not Used |
| 4 | Paper Outs | 21 | Standby Cycles |
| 5 | Line Feeds | 22 | Power Up Cycles |
| 6 | Characters Printed | 23 | Fault Resets |
| 7 | Cash Drawer | 24 | Power On Time (Min.) |
| 8 | Not Used | 25 | System Active Time |
| 9 | Init Requests |  | (Min.) |
| 10 | Auto Cutter Faults | 26 | Error Vectors |
| 11 | Over Temperature | 27 | Flash File Faults |
| 12 | Auto Cutter Re-home | 28 | USB Watch Dog Count |
| 13 | Not Used | 29 | FAT Flash Erase Cycles |
| 14 | Not Used | 30 | Ext Flash Erases |
| 15 | Missed TOF (if equipped) | 31 | System Memory Faults |


| Function | Print Current Configuration and Totals |
| :---: | :---: |
| ASCII | [ESC] y <9> or [ESC] ~ <9> |
| Hexadecimal | 1BH 79H 09H |
| Decimal | <27> <121> <9> |
| Description | This command forces the printer to print the current configuration. To function correctly it must be issued with the printer in the proper emulation mode. It is intended to be printed in the default Ithaca ${ }^{\circledR}$ configuration but will print in any configuration. |

Note: This command must be preceded with an ESC y $<8>$.

| Function | Print Current Totals |
| :--- | :--- |
| ASCII | [ESC] y<15> |
| Hexadecimal | 1 BH 79 H 0 FH |
| Decimal | $<27><121><15>$ |
| Description | This command forces the printer to print the current totals log. |
|  |  |
|  |  |

Function
ASCII

Print Current Print Setup Values
Hexadecimal 1 BH 79 H 14 H
Decimal <27> <121> <20>
Description This command forces the printer to print the current setup values.
Note: This command must be preceded with an ESC y $<8>$.

## Function Enter Hex Dump Mode

ASCII [ESC] y H
Hexadecimal 1BH 79H 48H
Decimal <27> <121> <72>
Description This command forces the printer into Hex dump mode. Once in this mode, all data is printed as a hex equivalent. The printer must be power cycled or a reset command sent to the printer to exit this mode.

Note: This command allows all preprocessed status commands to be processed and responded to. They will not be displayed.
Note: This command will process all UTF data into a 16bit Unicode value to be displayed.

## Model 9000 Dynamic Configuration

In some cases it is required to dynamically change or temporarily change the printer's configuration. The following commands are provided to quickly set or temporarily change the way the printer functions.

| Function: | Set Secondary Paper Color |
| :---: | :---: |
| ASCII: | [ESC] ~ P<c><s><r><b> |
| Hex: | 1 BH 7 EH 50 H |
| Decimal: | <27><126><80> |
| Description: | This command reconfigures the paper type and secondary paper color. This command should only be use when the colors of the installed paper are changed. |
| [ESC] ~ P<c | s><r><b> sets the paper type as follows: |
| Where <c> = P | Paper type |


| $\boldsymbol{<} \boldsymbol{c} \boldsymbol{>}$ in Decimal | $\boldsymbol{<} \boldsymbol{c} \boldsymbol{>}$ in Hex |  |
| :--- | :--- | :--- |
| 0 | 00 H | Monochrome |
| 1 | 01 H | Red |
| 2 | 02 H | Green |
| 4 | 04 H | Blue |

<s> = Speed Override
Speed in IPS = <s>/4 $0=$ default, Max value is 56 or 14 IPS.
If the Speed is set too high for the paper, poor print will result.
<r> red energy Typically 12-20
<b> Black energy Typically 18-35


Note: These commands change the configuration of the printer that is stored in nonvolatile memory. The values take effect immediately and will remain until changed by these commands or manual configuration. This command should only be used when needed.

| Function: | Auto Calibrate the Black Dot sensor |
| :--- | :--- |
| ASCII: | $[\mathrm{ESC}] \sim$ A |
| Hex: | 1BH 7EH 41H |
| Decimal: | $<27><126><65>$ |
| Description: | This command will force the printer to perform a black dot auto <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> this commation. The printer should be loaded with the intended paper when <br>  <br>  <br>  <br>  <br> measure the black dot. The command will adjust the sensor calibration, <br> the feed to black dot to cut in the middle of |


| Function: | Set Head energy for test |
| :--- | :--- |
| ASCII: | $[E S C] \sim H<C><e>$ |
| Hex: | 1BH 7EH 48H |
| Decimal: | $<27><126><72>$ |
| Description: | This command will temporarily set the head energy to <e>. There are |
| limited checks to verify that the values sent are usable. You can temporarily disable the |  |
| printer using this command. |  |

$<c>$ is the color ' $R$ ' for Color energy, ' $B$ ' for the Black energy.
$<e>$ is the energy. 12-20 for Color, and 18 to 35 for Black.

| Function: | Return the printers serial number |
| :--- | :--- |
| ASCII: | $[E S C] \sim$ |
| Hex: | 1 BH 7 EH 49 H |
| Decimal: | $<27><126><73>$ |
| Description: Read and return the printer's serial number as a NUL terminated ASCII <br> string.  |  |

Function: Return the Firmware ID.
ASCII: [ESC]~F

Hex: $\quad 1$ BH 7EH 46H
Decimal: <27><126><70>
Description: Read and return the printer's firmware ID as a NUL terminated ASCII string.

| Function: | Return the Firmware ID and file system image ID |
| :--- | :--- |
| ASCII: | $[E S C] \sim f$ |
| Hex: | 1 BH $7 E H 66 H$ |
| Decimal: | $<27><126><102>$ |
| Description: | Read and return the printer's firmware ID with the file image ID as a NUL |
| terminated |  |


| Function: | Return the Firmware CRC and Verification State |
| :--- | :--- |
| ASCII: | $[E S C] \sim$ Z |
| Hex: | $1 B H 7 E H 66 H$ |
| Decimal: | $<27><126><102>$ |
| Description: | Read and return the printer's firmware CRC and background verification |
| state as a NUL terminated ASCII string. |  |

Returns ~Z<S><CRC ${ }_{H}><$ CRC $_{\text {L }}>$
Where: $\quad<s>=0-2 C R C$ is being calculated and is not valid yet.
<s> = 3 for valid and correct
<S> = 4 for CRC verification has failed and the printer will restart shortly.
Note: There are additional [ESC] ~ used for test and configuration. DO NOT ATTEMPT TO USE THEM. You can permanently damage the printer with some of these commands.

## Model 9000 Green and Sleep Power Control

The Model 9000 Printer has a remote power control command that instructs it to enter sleep mode. When the command is issued, the printer enters sleep and consumes less power. Unlike pushing the Power button, remote sleep mode leaves the communications active. All commands except the exit power down command are ignored.
Green mode is only available in USB mode. In Green, USB Vbus is monitored and the printer enters a very low power state until Vbus is restored.
[ESC] y Remote Power Control

| ASCII | [ESC] y <n> |
| :---: | :---: |
| Hexadecimal | 1BH 79H <n> |
| Decimal | <27> <121> <n> |
| IPCL | \&\%YX17 or \&\%YX18 |
| EPOS | [ESC] y <n> |
| Where n | 17 Requests the printer to enter remote sleep mode. 18 Requests the printer to exit remote sleep mode |

Description Inquiry (ENQ) commands are accepted and answered in remote power down mode. The printer reactivates if the power button is pressed or a wake up command is received.

Note 1: If power is lost after the power down command is issued, the printer remembers it is in power down mode but does not reactivate the communications link. The power button must be pushed to return the printer to full operation.
Note 2: This command is not available in STAR mode.

## [ESC] ~S Set Sleep Wait

ASCII [ESC]~S<n>
Hexadecimal 1BH 7EH 53H<n>
Decimal <27> <126> <83><n>
IPCL None
EPOS None
Where $\mathbf{n} \quad$ Specifies the sleep timer in 10 second increments. ( $1=10$ seconds, and so on. $0=$ Disable sleep.

Description If no data is received after this period of time, the printer will enter a sleep mode where less power is consumed. Once in this mode, the printer will resume normal operation after a slight delay when data is received.

Note 1: At low temperatures, this delay will include a print head preheat delay while the print head is heated to a level that will allow normal operation.
Note 2: Sleep mode also removes the feed motor hold current. It is possible that the first line of print may be slightly altered if the paper is moved while in sleep mode.
[ESC] ~ G USB Green
ASCII $\quad[E S C] \sim G<n>$
Hexadecimal 1BH 7EH 47H <n>
Decimal <27><126><71><n>
IPCL None
EPOS None
Where $\quad$ <n> sets the Mode. $0=$ Disable. Non zero, enables green mode after n seconds.

Description The USB Vbus is monitored by the printer. This command sets up what the printer will do when Vbus is removed.

If this value is non zero, the printer will enter Green mode after n seconds.
Note 1: At low temperatures, this delay will include a print head preheat delay while the print head is heated to a level that will allow normal operation.
Note 2: Sleep mode also removes the feed motor hold current. It is possible that the first line of print may be slightly altered if the paper is moved while in sleep mode.

## Communications

## Protocol and Print Buffers

The following figure illustrates the communication flow from host computer to printer and from printer to cash drawer.


Figure 76 Typical POS System
For the host to printer communication link, the Model 9000 printer supports serial or parallel, USB and Ethernet communications. The serial, parallel, USB and Ethernet ports all follow standards developed for the personal computer environment.


Figure 77 Host to Printer Link
In most cases, the host computer is capable of sending information to the printer much faster than the printer can print it. To prevent information from being lost, a flow control mechanism is provided. The mechanism is called the flow control protocol. The goal of the flow control protocol is to exchange as much information as possible as fast as possible without losing any data. The Model 9000 printer supports three flow control protocols, two in serial mode and one in parallel.

From the printer's point of view, four basic functions are required of communications. All four are common to all three flow control protocols. There must be a communication driver, status inquire procedure, storage buffer, and print control mechanism that is using the data.

The communication port is either the serial port hardware or the parallel port hardware and the associated communication software driver.

A means for the host to bypass the buffer for status information, referred to here as an inquirer processor, is also required because the buffer offsets the printer in time from the host. (The printer is generally behind the host).

The storage print buffer is a software implemented, first-in first-out (FIFO) circular buffer. It stores information in an asynchronous fashion where information can be placed in it at any rate and retrieved from it at any rate, but the information order is not altered. All buffers have a finite size, and if information is put in faster than it is removed, the buffer will overflow. To avoid overflow, a flow control mechanism is required.

The print control mechanism is the remainder of the printer hardware and control software. It interprets control codes and operates the control panel, print head, and cash drawer interface.

The following figure illustrates the four basic parts of printer flow control.


Figure 78 Printer Communications Buffer Flow
The communication port is either serial or parallel and is controlled by a software communication driver. The driver receives data and returns requested status. As information is received from the host, data is taken from the communication port hardware by the driver, preprocessed to look for status inquire commands, and placed in the buffer. When the buffer input function finds that the buffer is getting full, it notifies the communication driver to implement flow control. Flow control attempts to stop further information from being sent from the host.

The print control software takes information from the buffer, as it needs it and can use it. When the buffer output function finds that the buffer is getting low, it notifies the communication driver that the information flow can be resumed (if it was stopped) and allows more information to be placed in the buffer.

The Model 9000 printer has a configurable input buffer. The printer can be configured to allow from 40 to 8196 bytes of input buffer. Consequently, up to 8196 characters (or control codes) can be sent to the printer before they are interpreted and printed. In effect, the host computer can get 8196 characters ahead of the printer. In all cases, the buffer resumes communications when it is half empty. For example, if the buffer is configured to be 2048, the printer will signal stop when 2048 bytes are in the buffer; resume will be signaled when 1024 bytes remain. Inquire commands are preprocessed, which means they are found in the input data stream and acted upon as they are received. The status returned is valid as of the time the command is received. This is termed real-time status even though inquire commands are preprocessed and still placed in the buffer. Real-time status assures that data is not lost when the inquire sequence is part of another command. However, the buffer may also be filled by inquire commands if the printer is waiting for some activity.

## USB

USB stands for Universal Serial Bus. A technical discussion of USB is beyond the scope of this document. If you would like more information about USB, visit the USB web site at www.usb.org. and http://www.usb.org/developers/devclass docs

## Powered USB

The Powered USB web site http://www.poweredusb.org/ provides standards for Powered USB printers and other devices.

## USB Support

The Model 9000 printer supports the standard USB Printer class interface. (See Appendix B). This interface standard is supported by most operating systems including Windows and Linux. In Windows this interface is supported by the USB Printing Support Driver (usbprint.sys) and will present the printer as USB001-USB999. The ID is assigned by Windows and not by the printer. In Linux, the printer is also supported by a USB Printing Support driver; however the exact details can vary based on the Linux implementation. The printer will generally be presented as $\mathrm{lp} 0-\mathrm{lp} 99$ again depending on the implementation.

The Model 9000 fully supports the USB Printer class device including Read/Write and Status.

See: www.usb.org/developers/devclass docs/usbprint11.pdf
The Model 9000 printer also supports the USB CDC class device Abstract Control Model standard as a USB Serial port. This standard is also supported by Windows and uses the usbser.sys driver supplied by Microsoft. Unlike the Class 7 device, this driver will require an inf file to associate the printer with the driver.

## See http://www.usb.org/developers/devclass docs/usbcdc11.pdf

TransAct has written a POSPrinter.OCX ActiveX that will allow you to easily interface to our printers. It is used by all of our demonstration programs. This OCX is available for use with customer applications. It works with printers installed on Serial COM ports, LPT ports, TCP/IP and USB Class 7 interfaces. A USB compatible version is available from customer support or from our web site.

## USB DFU

The Model 9000 printer supports the USB DFU (Device Firmware Upgrade) standards for firmware update as an option. This option is disabled by default because it requires that the printer be presented as a composite device and both the USB Printing Support Driver and the DFU driver be loaded at all times. In most POS system, it is not desirable to load both drivers at all times.

It is not required to support DFU to update the firmware in the printer, however, without DFU it requires more host application development to support printer updates without operator attendance.

See: www.usb.org/developers/devclass docs/DFU 1.1.pdf

## USB Problems

## USB Enumeration Issues

When a printer is connected to Windows, Windows remembers it. If you change the configuration, Windows will generally notice that the printer is different and assign a new USB port to the printer.

Windows also can assign a new USB port all on its own. This typically happens when windows thinks the previous port is already in use when the printer enumerates. This generally happens after a windows crash but it can happen for other reasons. Once it does, the previous USB port is not easy to free up. Rather than hard code a USB port ID like USB001, the application should look for the printer on a series of USB ports starting at USB001 and going up until it's found. Generally the first 10 is good enough although going through the first 99 is possible. The trade off is that it takes time to search and if the printer is not connected, it won't be found.

## USB Drops and disconnects

Another USB issue is that the USB link can be dropped by Windows. Windows will terminate a USB link if it sees babble on the link. (Google "USB Babble"). This can be caused by poor USB cables or a high noise environment. It's also dependant on the host system hardware. Some PC's are much worse than others. The root cause is EMI (Electromagnetic Interference) and this should be considered during system installation. The power line is generally the primary source of EMI but it can come from other sources like air conditioners and other equipment. One situation to avoid is using different power sources for the printer and the host computer. There can be significant potential differences between the grounds of two different primary power sources. USB shares the ground between the host and the printer and any grounding differences between the host computer and the printer can cause the USB link to become unreliable.

There is a USB watch dog feature (See page 207) in the printer that can be activated and used to make the link auto recover, however, it is best the try to remove the source of the noise first and/or improve the USB cable. We send the best cable we can find with the printer but it's not always enough.

## Input Buffer size

The input buffer in the Model 9000 is configurable to values that are less than the USB packet size. The printer must be able to accept a full USB packet. If the input buffer is configured to be less than the USB packet size, the printer will dynamically increase the buffer to handle the maximum USB packet size. The USB packet sizes and minimum buffer sizes are listed below.

| Protocol | Packet Size <br> in bytes | Minimum buffer <br> size in bytes |
| :--- | :---: | :---: |
| USB 1.1 | 64 | 104 |
| USB 2.0 | 512 | 552 |

## Ethernet TCP/IP

A 10/100-BaseT Ethernet adapter is available for the Ithaca Model 9000 printer. This Wired Ethernet Adapter provides a fast and easy way to network and share printers in your system. Ethernet provides a consistent common connection between printers and computers using standard protocols supported by Windows ${ }^{\circledR} 95,98$, Me, NT, 2000, XP, Windows 7 as well as many other platforms. Ethernet is probably the most common networking medium, and thus allows printers to be easily added, moved and removed with inexpensive common cabling and off the shelf components.

## Print Server Features Standard Ethernet Connection

- 10/100 Mbps Speed
- 10/100 Base T RJ45 network connection
- Network Traffic LED indicator
- Configured through networked PC Web Browser
- Works with Virtually All Major Operating Systems
- Integrated into the Printer


## Supported Protocols

- Port 9100 (RAW)
- Port 515 (LPR)
- Hypertext Transfer Protocol (for configuration)
- Port 9110 UDP for real time status.
- SNMP for network maintenance and printer status ${ }^{37}$.


## User Interface/Configuration

- HTTP/Web Interface
- Home status and information Page
- General Configuration Page
- IP Address / Subnet Mask
- Auto-IP, DHCP, Static IP...
- Printer Host Name (User Defined)
- Printer Location (User Defined)
- UDP configuration
- SNMP configuration
- Printer Configuration Page
- Configurable RAW Port selection
- Adapter Firmware Update


## Other

- Push Button for Initial IP Address status and adapter reset.
- Self-Diagnostics
- Firmware Upgrade via TransAct provided utility.

[^23]For more information and a user's guide refer to the TransAct Ethernet Users Guide (100-10938).

## Ethernet Plug and Play

At this time, the Ethernet adapter does not support the Ethernet Plug and Play protocol. Most POS systems don't want printers to automatically be discovered and added to a host system. This would make assigning specific printers to specific terminals very difficult.

## Parallel Port

## Parallel Port Protocol

The Model 9000 parallel port behaves just as any printer connected to a personal computer. The parallel interface accepts 8 -bits of data from the host. The strobe signal from the host is used to indicate that data is available. When the printer sees the strobe signal and accepts the data, it asserts a busy signal. The busy signal indicates to the host that the printer has accepted the data and is working on it. After the printer absorbs the data and is ready to accept another byte, the printer asserts acknowledged (ACK), negates busy, and then finally negates ACK.

The host computer should meet the following parallel-port specifications and timing. In a standard personal computer, the strobe signal is generated by software writes to the parallel-port control port, which is typically done in the bios or some parallel-port driver. As personal computers become faster, it is up to the software to assure that the strobe signal does not get too narrow. One microsecond is the minimum pulse width that should be sent down a cable. Shorter pulse widths ( 500 nanoseconds) will be accepted by the printer. The cable can introduce significant signal degeneration and skew.

The data must be valid before the strobe signal is asserted and remain so until the strobe is removed. A 500 nanosecond setup and hold time is required by the printer. The following chart illustrates parallel-port timing.


Rdly Approx. 2 seconds
Dstu 500 nS (Min)
Dhld 500 nS (Min)
Tstb 1 uS (Min)

Bhld Approx. 5 uS
Ahld Approx. 5 uS
Sdly 3 uS (Min)
Tcycle 200-280uS Typ.

Figure 79 Parallel-port Data Timing

To implement flow control, the busy signal is asserted by the printer outside the normal data-transfer sequence. The busy signal has several uses, but it always indicates that the printer cannot accept information. The busy signal may happen at any time and may not adhere to the above timing chart in all cases. It is up to the host's parallel-port driver to handle all possible busy states. It is important that the host driver does not hang up if it takes some time for an acknowledged (ACK) response to a strobe signal. Standard personal computer parallel-port hardware implements an interrupt on the ACK signal to make flow control easier.

Some systems may wish to change the details of how the strobe, busy, and acknowledged signals interact. The parallel-port option features define how the strobe, busy, and acknowledged signals operate. In normal mode, the printer follows the standard (Centronics) parallel-port conventions. With Options 1 and 3, the acknowledged and busy signals change simultaneously, which is sometimes referred to as ack-after-busy. Options 2 and 3 force busy high on the rising edge of the strobe, which is sometimes referred to as busy-while-strobe timing. In all cases, the data is latched on the rising edge of the strobe. In most cases, the normal timing mode gives the best results.


Figure 80 Parallel Port ACK Timing Options

| Legend | Time Interval | Minimum | Maximum |
| :--- | :--- | :--- | :--- |
| t1 | DATA Setup to STB | 0.5 uS |  |
| t2 | STB Width | 0.5 uS | 500 uS |
| t3 | DATA Hold after STB | 0.5 uS |  |
| t4 | BUSY Delay after STB | 0 | 0.5 uS |
| t5 | ACK Pulse Width | 2.5 uS |  |

Table 37 Parallel-port Timing

Note: Altered STB timing to take data on the falling edge of STB can be generated as a factory option.

## Printer Buffer Size

The Model 9000 printer has a configurable buffer size. It can be set from 40 to 8192 bytes. The configurable buffer allows an application to control how far ahead the buffer gets from the printer. The smaller the buffer, the tighter the control will be. It is up to the application developer to select the optimal buffer size.

## Parallel Port Inquire and IEEE 1284

The Model 9000 printer supports the IEEE 1284 bidirectional parallel peripheral interface standard. The IEEE 1284 standard provides for a bidirectional link on the parallel port. The Model 9000 Printer only supports Modes 0 and 4 , which provide a nibble mode reverse channel for printer identification and status inquire commands. It is beyond the
scope of this guide to describe the IEEE 1284 protocol. The complete specification is available from the Institute of Electrical and Electronic Engineers, Inc. at www.ieee.org.

## IEEE 1284 Response Buffer

The Model 9000 printer has a 256-byte buffer that contains information to be returned by the IEEE 1284 reverse link. Information is placed in the buffer in the same format as RS-232 serial information is returned.

Inquire commands sent to the printer in IEEE 1284 mode place responses to the commands in the IEEE 1284 reverse-channel buffer. The buffer is then transmitted to the host when it requests the reverse channel.

## Mode 4

Mode 4 allows the printer to return identification information to the host system. The Model 9000 printer returns:
$x x, y y$ length of following data, 2 bytes with MSB first

| MANUFACTURER | TransAct Technologies |
| :--- | :--- |
| COMMAND SET | 9000 CL, IPCL |
| MODEL | M9000 |
| COMMENT | Rev. $x . x x$ |

When a Mode 4 request is made, the IEEE 1284 buffer is cleared before the ID is sent.

## Mode 0

Mode 0 provides a reverse channel for information from the printer. Normal responses to inquire commands are placed in the IEEE 1284 reverse-channel buffer. The Mode 0 reverse-channel request begins returning information to the host. The host may terminate the transmission at any time. If the link is terminated between nibbles, the last nibble is retransmitted on the next request. If a complete byte is transmitted, it is deleted from the IEEE 1284 reverse-channel buffer.

An inquire command can clear the reverse-channel buffer before placing its response in the buffer.

The IEEE 1284 buffer is limited to 1000 characters. If the buffer is not emptied by reverse-channel requests, the buffer overflows. The buffer is a first-in first-out (FIFO) buffer, and the last data placed in the buffer is lost.

## Time-outs

IEEE 1284 specifies time-outs for various phases of the protocol. The Model 9000 printer treats time-outs as minimums. The printer time outs at the specified period only if it is idle during the complete phase.

## Active State

The IEEE 1284 reverse channel may be activated at any time as long as the printer is not busy with data. If the printer is off-line or the cover is open, the reverse channel may be activated. If the printer is placed back on-line while the reverse channel is active, the printer will not exit the reverse-channel mode.

## Inquire Responses

In general, inquire commands place two-byte responses in the IEEE 1284 reversechannel buffer. The two bytes are the same as the serial mode responses. In IEEE 1284 mode, the printer remains busy until the inquire command is processed, assuring responses in real time. To receive the response, the host must ask for it. It is possible for the host to make a number of requests and wait for the responses; however, the status returned is valid at the time the request was made.

It is also possible for the dynamic response mode to be activated and the reversechannel mode to be opened. The reverse channel then changes from reverse-idle to reverse-data available as the status changes. The application must be careful in dynamic response mode that the dynamic responses are not left active when the reverse channel is closed. If the dynamic responses are active when the reverse channel closes, the output buffer overflows. If data is in the buffer when dynamic responses are activated, it will not be replaced by the current status. If dynamic response is off and a buffer-clear command is issued followed by activation of dynamic responses, the buffer will contain fresh data. If the buffer-clear command is issued after the dynamic response is activated, the buffer will be cleared and any unread responses will be lost.

## Parallel Port Plug and Play

Microsoft Windows implements Plug and Play (PnP) by doing a special paralleI, IEEE 1284 inquire during boot. The Model 9000 Printer responds to the inquiry if IEEE 1284 is active.

If the Windows PnP configuration flag is set in the printer, IEEE 1284 will be active for all parallel-port modes. For example, PnP in parallel mode forces IEEE 1284. For PnP to work, the host must have an IEEE 1284-compatible port adapter, and the cable used to connect to the printer must support all of the interface signals.

The Plug and Play response follows.

Device ID string:
Manufacturer:

PnP ID:
Device Description:
Device Class:

TransAct.;
CMD:M9000CL,IPCL;
CLS:PRINTER;MDL M9000 PcOS;
DES:Ithaca M9000;
REV:x.xx;OPTS;\$6xyz
LPTENUM 1 Ithaca-Perph....TBD.....
Ithaca M900
Printer

## OPTS Field Description

## OPTS;\$6XYZ

where $X$ is a model definition. $X$ will be 3 if the printer is in the native Model 9000 emulation. 5 indicates that the printer is in some other emulation. $Y$ and $Z$ are bit fields that designate the options attached to the printer.

| Bit |  | Y |
| :--- | :--- | :--- |
| Bit 0 | Color Support active | 0 |
| Bit 1 | Undefined | Knife module attached |
| Bit 2 | Periodic Status Back <br> Supported | 0 |
| Bit 3 | 0 | 0 |
| Bits 4-5 | 1 | 1 |
| Bits 6-7 | 0 | 0 |

## Serial Port

## Serial Port Protocol

The serial port supports two flow control standards, XON/XOFF and Ready/Busy (sometimes called Data Terminal Ready (DTR) or hardware handshake).

When Ready/Busy flow control is selected, the printer can be configured to use DTR, Request to Send (RTS), or both for flow control. If only DTR is selected for flow control, RTS will indicate the cover is open or the printer has faulted. The following discussion assumes the DTR is being used for flow control.

The Ready/Busy protocol generally uses the DTR signal to indicate to the host computer that the printer is not ready to accept data. The host should stop sending data to the printer as soon as possible. Because the host may not notice the DTR signal until it has transmitted several bytes of data to the printer, the printer continues to except up to $255^{38}$ bytes of data after it indicates that it is not ready. Figure 81 Serial Port Flow Control Using DTR illustrates how the Ready/Busy protocol works, and Figure 82 XON/XOFF Serial Port Flow Control illustrates how the XON/XOFF protocol works.


Figure 81 Serial Port Flow Control Using DTR

[^24]
$$
\text { RTS }=\text { Request to Send } \quad \text { DTR }=\text { Data Terminal Ready }
$$

Figure 82 XON/XOFF Serial Port Flow Control

## Print Buffer Flow

Flow Chart 1 illustrates how the communications driver acquires data from the serial port and places it in the buffer using Ready/Busy or XON/XOFF flow control.


Flow Chart 1 Serial Buffer Operation
At the top of this flow chart, the driver is waiting for data. When data is received from the host, the printer checks to see if it is an inquire command. If the data is an inquire command, it is responded to and placed in the buffer. If not, the data is placed in the buffer without response. The buffer is then checked to see if it is full before the internal pointer is incremented. If it is not full, the pointer is incremented in preparation for the next data byte. The buffer is checked by looking to see if it has passed a high watermark. If the buffer has, the communication driver is notified, and it resets DTR to indicate to the host that no more data should be sent.

Flow Chart 2 illustrates how the print control software takes data from the buffer and controls flow. At the top of the chart, the print control software asks for data. If there is no data in the buffer, a "no data flag" is returned. The print software must then wait for data. If there is data in the buffer, it is read, and the pointers are updated. The buffer is then checked to see how much information is left. If the buffer is below a low watermark (about 100 bytes left), the communication driver is notified, and DTR is reasserted.

When XON/XOFF flow control is used, the flow is similar to DTR flow except that DTR is not used and XON/XOFF control characters are transmitted back to the host on the serial link. The XON/XOFF advantage is that only three wires are required to interconnect to a printer. The disadvantage is that a serial-port receiver driver must be written for the host.


Flow Chart 2 Print Controller Using Data

When the printer is on, the print controller looks for data. If there is data, it processes it. Flow control is done when the data is taken from the buffer and the amount of data in the buffer is less than a prescribed amount. The low watermark is set based on the expected environment. The Model 9000 Printer sets the low watermark at half the buffer size or 1024 characters whichever is smaller. The low watermark gives the host application time to get more data to the printer before the printer uses up what it has.

When XON/XOFF protocol is implemented, it is possible for the host to miss an XON or an XOFF. To prevent this from causing a communication lockup, the printer sends an XOFF for every character received after the high watermark is reached. If the printer detects that the serial data link is inactive, it sends out an XON about every two seconds. When the printer cover is opened, an XOFF is sent. An XOFF is sent even when the internal data buffer is past the high watermark and is done to allow the host to know that the printer is not ready.

## Printer Buffer Size

The size of the Model 9000 buffer is configurable, which allows an application to control how far ahead of the printer it can get before being asked to wait. The buffer size can be set from 256 to 8192 bytes. The smaller the buffer, the tighter the control will be ${ }^{39}$. It is up to the developer to select the optimal buffer size for an application.

## Serial Mode Plug and Play

Microsoft has defined a Plug and Play (PnP) protocol to identify devices on serial links. The enumeration process is designed to find and automatically configure a device driver for the printer. It is done by toggling the control lines in a specific sequence that is recognized by the printer. The peripheral then responds such that Windows can identify the device.

To allow the printer to look for and respond to the sequence, EISA PnP must be enabled. When enabled in serial mode, the flow control is forced to Request to Send (RTS) with Data Terminal Ready (DTR) static.

## Using DSR

Windows uses the host's Data Set Ready (DSR) line (the printer's DTR line) on the serial port to determine whether a device is attached to the port. When Windows is booted (or does PnP), the system sets the host's DTR and RTS to zero and waits approximately 200 milliseconds. It then sets the DTR to one and waits another 200 milliseconds. After 200 milliseconds, the system checks to see whether the DSR line is high. This indicates that a serial device is attached to the serial port. The system responds by setting RTS high and waits to receive the device identification string.

In some devices, such as the serial mouse, the DSR line can be held high by tying it directly to the DTR line. When the mouse is connected to the serial port on the personal computer, the power supplied through the DTR line also raises DSR high. For Plug and Play compatibility, RTS flow control is used at the printer, because DSR must stay high as long as the device is attached to the serial port.

[^25]
## Serial Device Identification

The serial device must report its identification to the system using an identification string at 1200 baud. The identification string consists of 18 fields that identify the device, class of the device, and other compatible devices. Only five of the fields are required by all serial devices; all others are optional. The identification string used by the Model 9000 Printer follows.

```
028H
0,1
'IPR0210'
\PRINTER
lM9000 PcOS
ISC:
Serial Configuration:
xxH
029H
Start of ASCII response
PnP Rev
Unique ID (IPR plus revision level)
Printer
Model
19200,N,8,1
Baud, Parity, Bits, Stop Bits
Check-sum
End PnP
```

Note: The model field may be altered to generate PnP ID's other than "M9000 PcOS" by special order.
When the identification is complete, the printer returns to the baud rate specified in the configuration.

## Serial Port Inquire

The serial port inquire is more straightforward than parallel mode. The serial acknowledged (ACK) or not acknowledged (NAK) responses follow a uniform format, the ACK or NAK is always followed by the command ID that requested it. This makes the design of the host application easier because the response can be identified and always follows the same format.


Flow Chart 3 Inquire Flow

The host sends an [ENQ] <id> (form sensor status) request to the printer. The printer responds with an $[A C K]$ <id> indicating that the request was identified, status true.

Inquire commands affect the printer's performance. Communication is a high priority for the printer. Inquire commands take processing time away from the print tasks. It is possible to ask for so much status that the printer slows. In serial mode, it is important that the response to an inquiry is received by the host before another command is issued. When an inquiry is received by the printer, it is buffered in a high-speed processing queue. When the printer has time, it empties the queue and processes the inquiries. The printer responds to the command as soon as the second byte of the command is taken from the high-speed buffer. If the host is looking for a form to be inserted, it should not send status requests as fast as it can. The host will receive a response to all of them. If the host did not wait for a response to each, there would be unnecessary responses.

## Parallel Port Inquire

In IEEE 1284 mode, inquire responses are placed in an IEEE 1284 transmit queue. When the IEEE 1284 reverse channel is open, the responses are returned to the host. It is important that after each request the reverse channel be opened. Inquire responses remain in the queue until read. If the [ENQ] <9> command is sent to the printer, the IEEE 1284 buffer will be cleared, and only the response to the [ENQ] <9> will remain.

## Display Pass Through

The display pass through feature allows a pole display to be interconnected with the printer. The printer is connected to a host system with a special serial cable. The host sends serial data to the printer and the printer sends serial data to the pole display. The printer does not provide power to the display. During normal printer operation, no data is passed to the display. In pass through mode, all received data is passed on to the display.

The restrictions and considerations for pass through are:

1. Pass through only works on serial printers with DTR flow control.
2. XON/XOFF mode does not work correctly.
3. All inquire ([ENQ]) commands are active when not in actual pass through mode. If, for example, an [ENQ] command for cash drawer status is received by the printer, the response is transmitted. When pass through is active, all data except the [ENQ] is passed. The printer does not look for or act on any commands other than inquires.
4. If pass through data is sent to the printer in continuous mode (i.e. as fast as possible), each [ENQ] character in the sequence delays the transmit data by one byte. The printer buffer size is limited. If the buffer overruns, data will be lost.
5. Modem handshake signals from the printer are not controlled during past through. Their state is set by printer status. Opening the cover toggles the control lines. When the printer cover is open, it accepts data, including all [ENQ] commands. If an [ENQ] \# is received when off-line, pass through is entered.
6. Previously buffered data is processed by the printer in pass through mode. Printer performance is degraded by the processing of pass through data.
7. In 8-bit, no parity mode, data is passed through unaltered. In all other modes, the parity is checked, stripped, and then regenerated by the printer.
8. Pass through has no affect on a printer in parallel mode.

## Remote Printer Reset

## Reset in Serial, USB and Ethernet Mode

It is possible to generate a software printer reset in serial, USB or Ethernet mode. The [ENQ] <10> command requests that the printer reset. (This is not a hardware reset). The reset completely initializes the hardware and software.

Note: If the printer mode was changed by the [ESC] y $<2>$ or $<3>$ command, a soft reset will not return to the power on default.

The command flow is as follows:

- The $[E N Q]<10>$ is acknowledged. During cleanup and initialization, the printer is placed off-line. Before the printer initializes, it tries to clean up its input buffer and other internal processes.
- The printer's software is reinitialized.
- The power-cycled flag is set.
- The print head is homed and re-calibrated.
- The printer goes back on-line.


## Reset in Parallel Mode

In parallel mode, driving the INIT signal on the parallel port for 100 milliseconds generates a software reset. It takes about two seconds for the printer to recover from a reset. The [ENQ] <10> command has the same effect, but it is not acknowledged.

## Miscellaneous Communication Features

## Power-cycle Recovery

Sometimes the host needs to know if the printer was power cycled. An example would be after the receipt tape was changed. It is not necessary to turn off the printer to change the receipt. However, if the operator does, any information sent to the printer before the power cycle will be lost.

The Model 9000 Printer has a flag that is set after a reset. The flag stays set until the host requests a reset. The [ENQ] <11> command reads the flag. If the command returns power-cycled status, the power has been reset or power cycled since the last request. All unprinted information has been lost.

If the print operation is critical, it is a good idea to check the power-cycle flag before and after all transactions. An alternate approach is to check the flag after every off-line to on-line transition.

Note: If the printer mode was changed by the [ESC] y <2> or <3> command, a powercycle reset will return to the initial configuration.

## Data Pass-through

The Model 9000 Printer supports data pass-through (sometimes referred to as display pass-through). Data pass-through is activated by the print-suppress command with the pass-through bit set. In pass-through mode, the printer can be requested to transmit any data that it receives. When this is the case, the printer's inquire commands are active but of little use. Typically, the printer's transmit data is connected to the next device in line. Inquire commands have no data path back to the host. If pass-through is to be used, it is a good idea to deactivate the inquire commands. (Use [ESC] y <6>).

Before pass-through data can be used, it must be activated in the configuration menu, which is the third selection in the print-suppress/pass option.

All data after, but not including, the print-suppress command is pass through. When deactivated, the print-suppress command is again not pass through. During pass through the multi-drop commands are active (if configured).

The printer will act upon a multi-drop control command found in the pass-through data. If the printer is deselected during pass-through, it stops passing on the data. When the printer is re-addressed, data pass-through is active.

## Multi-drop Configuration

The Model 9000 Printer supports a multi-drop configuration where up to three printers can be connected in parallel. Each printer has a different address A, B, or C. The printer does not accept any print information unless it is addressed. Multi-drop configuration is only available in serial mode, as parallel printers cannot be connected together.

## Off-Iine Active

A configuration flag that prevents the printer from going off-line (in most cases) is available. Off-line mode allows the application to query the printer for status rather than assume a status from the control signals. This feature allows the host application to query the printer at all times except when there is no power; a full input buffer; or a hard failure. For example, when the printer's cover is open, the printer stops printing but still accepts data and inquiries. The inquire cover status command returns, "Cover open."

Hard failures result when there is no power or a printer fault ${ }^{40}$ occurs. If the printer is offline, either the input buffer is full or a hard fault has occurred. The host application should not allow the input buffer to fill.

[^26]
## Recovery from Mechanical Errors

The Ithaca Inquire commands and the Epson [DLE][ENQ] and [DLE][EOT] commands allow most printer error status to be read and in some cases recovery attempted. Paper jams and auto-cutter faults can sometimes be recovered; however, any data not previously printed will be lost.

If the application is to support error recovery, the application should use the appropriate status request commands to query the printer periodically. If an error response is such that the fault is recoverable, the host application should interact with the operator and request that the fault be corrected (IE. Clear the Paper Jam). When the operator indicates that the problem has been corrected, the host can issue a reset request.

If a serious error occurs, the printer will halt and enter fault error mode. If the fault is such that the printer can maintain communications with the host, the print status request and response system will remain active. The status of the system will however remain static, i.e. the status responses will reflect the state of the system when the fault occurred.

There are errors that cannot be reported to the host system. These errors are such that the integrity of the printer does not allow continued operation. That is there is no way to report the error. These errors occur (for the most part) during power up diagnostics.
They are as follows:

## EEPROM READ ERROR Power up only

The Internal EEPROM is not readable or the check sum is bad.
Pressing the Power Button will attempt to rewrite the configuration information. This may leave the printer configured incorrectly.
EEPROM WRITE ERROR Power up/down and Configuration only The Internal EEPROM is defective. There is no recovery.
SOFTWARE ERROR VECTOR Can occur at any time.
These errors can occur during operation. They signal a serious problem with the system. In most cases this error will also generate a Watch Dog reset. A power cycle will generally recover normal printer operation. An ESD event or a firmware bug generally causes these errors. The printer maintains an error log, this log contains additional information about the fault and is printed during manual configuration. The information in this log should be reported to TransAct to identify the exact cause of the fault.
USERSTORE FORMAT ERROR Power up or User Store Write Operations The User Store data in FLASH has an invalid format. Pressing the Power Button will erase the user store and reformat it. This can be caused by a firmware update.
FLASH WRITE ERROR
Power up or User Store Write Operation. The Program Flash has failed. There is no recovery from this error.

## COM ADAPTER ERROR

Power up only
The communications interface card is not supported by the firmware. There is no recovery.

## Programmer's Notes

When the serial port is used, it is important that the output lines from the printer not be shorted or back driven. If the signals are not to be used, they should be left open.

Pins 3,4 , and 7 (of the 9 pin connector) are outputs from the printer. If any one of these signals is grounded or back driven, the other two outputs will be degraded.

The best time to configure the printer by the host with remote configuration is during system setup or software update.

## Appendix A: CRC16

The CRC16 function used in the Model 9000 is as follows:

```
const static short crctab[] =/* CRC lookup table */
{
    0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
    0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
    0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
    0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
    0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
    0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
    0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
    0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
    0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
    0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
    0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
    0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
    0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
    0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
    0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
    0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
    0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
    0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
    0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
    0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
    0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
    0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
    0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
    0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
    0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
    0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
    0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
    0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
    0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
    0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
    0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
    0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
//
// Update a CRC check on the given buffer.
// x
unsigned short crcbuf(unsigned short crc, int len, unsigned char* buf)
{
int i;
            for (i=0; i<len; i++)
                        crc = ((crc >> 8) & Oxff) ^ crctab[(crc ^ *buf++) & Oxff];
    return (crc);
}
```


## Appendix B: USB Printer Class Support USB Printer Class 7 Specification

The USB interface conforms to USB Printer class standard published by the USB standards organization Version 1.1 dated January 2000.

See: www.usb.org/developers/devclass docs/usbprint11.pdf
The Model 9000 Printer will appear to the host system as a USB class 7 device.
There are 3 class specific requests that may be made to the printer after enumeration.

| Label | bmRequest <br> Type |  | bRequest | wValue | wIndex | wLength |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| GET_DEVICE_ID | 10100001 B | 0 | Config <br> Index |  <br> Alternate <br> Setting | Length <br> Maximum | 1284 <br> Device ID <br> String |
| GET_PORT_STATUS | 10100001B | 1 | Zero | Interface | 1 | BYTE |
| SOFT_RESET | $00100001 B$ | 2 | Zero | Interface | Zero | [None] |

Table 38 USB Class 7 Control pipe commands.

## GET_DEVICE_ID (bRequest = 0)

This class-specific request returns a device ID string that is compatible with IEEE 1284. See IEEE 1284 for syntax and formatting information. The wValue field is used to specify a zero-based configuration index. The high-byte of the wIndex field is used to specify the zero-based interface index. The low-byte of the wIndex field is used to specify the zerobased alternate setting. The device ID string is returned in the following format:

| Offset | Type | Description |
| :--- | :--- | :--- |
| $0 \ldots \mathrm{n}-1$ | Data | IEEE 1284 device ID string (including length in the first two bytes in big <br> endian format). |

## GET_PORT_STATUS (bRequest = 1)

This class-specific request returns the printer's current status, in a format which is compatible with the status register of a standard PC parallel port. The following table defines the data returned.

| Bit(s) | Field | Description |
| :--- | :--- | :--- |
| $7 . .6$ | Reserved | Reserved for future use; device shall return these bits reset to zero. |
| 5 | Paper <br> Empty | $1=$ Paper Empty, $0=$ Paper Not Empty |
| 4 | Select | $1=$ Selected, $0=$ Not Selected |
| 3 | Not Error | $1=$ No Error, $0=$ Error |
| $2 . .0$ | Reserved | Reserved for future use; device shall return these bits reset to zero. |

## SOFT_RESET (bRequest = 2)

This class-specific request flushes all the USB buffers and resets the Bulk OUT and Bulk IN pipes to their default states. This request clears all USB stall conditions. This reset does NOT change the USB addressing or USB configuration or actually reset the printer.


Note: Version 1.0 of the USB printer class specification incorrectly stated that the bmReqestType for SOFT_RESET was 00100011B.

## Class 7 USB Interface

The Model 9000 USB interface supports all three interfaces. The Get Device ID interface is configurable and may be disabled to prevent the host operating system from attempting to automatically install a Print Driver ${ }^{41}$.


Note: The Print Driver is not the USB printer driver. It is a higher level driver that may or may not be used in the host system.

The Soft Reset will not reset the operating firmware nor will it do a complete hardware reset. It only resets the USB bulk pipes.

[^27]
## USB Class Definitions for Communication Devices (CDC)

## USB Class 2 Abstract Control interface

The model 9000 supports the minimum CDC protocol requirements for the Abstract Control Model required to support the Microsoft USB Virtual Serial port driver. Refer to the Universal Serial Bus Class Definitions for Communication Devices, Version 1.1, January 19, 1999 for a complete definition of this protocol.

## See http://www.usb.org/developers/devclass docs/usbcdc11.pdf

The Model 9000 CDC class interface supports the following Requests and Notifications:

| Requests | Code | Description |
| :--- | :---: | :--- |
| SEND_ENCAPSULATED_COMMAND | 00 h | Issues a command in the format of the supported control <br> protocol. |
| GET_ENCAPSULATED_RESPONSE | 01 h | Requests a response in the format of the supported control <br> protocol. |
| SET_LINE_CODING | 20 h | Configures DTE rate, stop-bits, parity, and number-of-character <br> bits. |
| GET_LINE_CODING | 21 h | Requests current DTE rate, stop-bits, parity, and number-of- <br> character bits. |
| SET_CONTROL_LINE_STATE | 22 h | RS-232 signal used to tell the DCE device the DTE device is <br> now present. |
| Notifications | Code | Description |
| RESPONSE_AVAILABLE | 01 h | Notification to host to issue a <br> GET_ENCAPSULATED_RESPONSE request. |
| SERIAL_STATE | 20 h | Returns the current state of the carrier detect, DSR, break, and <br> ring signal. |

Table 39 Supported Class Specific Requests and Notifications
USB class specific requests that are supported by the printer as follows:

| bmRequest <br> Type | bRequest | wValue | wIndex | wLength | Data |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 00100001B | SEND_ENCAPSULATED_COMMAND | Zero | Interface | Amount of <br> data, in bytes, <br> associated with <br> this recipient. | Control protocol- <br> based command |
| 10100001B | GET_ENCAPSULATED_RESPONSE | Zero | Interface | Amount of <br> data, in bytes, <br> associated with <br> this recipient. | Protocol <br> dependent data <br> response |
| 00100001B | SET_LINE_CODING | Zero | Interface | Size of <br> properties | Line Coding <br> Structure |
| 10100001B | GET_LINE_CODING | Zero | Interface | Size of <br> Structure | Line Coding <br> Structure |
| 00100001B | SET_CONTROL_LINE_STATE | Control <br> Signal <br> Bitmap | Interface | Zero | None |

Table 40 Supported Class Specific Requests

The line coding structure is as defined in the CDC specification but is not used by the printer.

| Offset | Field | Size | Value | Description |
| :--- | :--- | :--- | :--- | :--- |
| 0 | dwDTERate | 4 | Number | Data terminal rate, in <br> bits per second. |
| 4 | bCharFormat | 1 | Number | Stop bits <br> $0-1$ Stop bit <br> $1-1.5$ Stop bits <br> $2-2$ Stop bits |
| 5 |  |  |  | Parity <br> 0 |
|  |  | 1 | None |  |
| $1-$ Odd |  |  |  |  |
|  |  |  |  | $2-$ Even <br> $3-$ Mark <br> $4-$ Space |
| 6 |  |  |  | Data bits <br> (5, $6,7,8$ or 16). |

Note: This is not actually used by the printer to control the transfer speed. It is only used to support the Microsoft Driver.

Table 41 Line Coding Structure
The set control line state command is supported but does not actually control the printer.

| Bit position | Description |
| :--- | :--- |
| D15..D2 | RESERVED (Reset to zero) |
| D1 | Carrier control for half duplex modems. This signal corresponds to V.24 signal 105 and RS-232 signal <br> RTS. <br> 0 - Deactivate carrier <br> 1 - Activate carrier |
| D0 | Indicates to DCE if DTE is present or not. This signal corresponds to V.24 signal 108/2 and RS-232 <br> signal DTR. <br> 0 - Not Present <br> 1 - Present |

Note: This is not actually used by the printer.
Table 42 Set control Line state

The Serial state DSR and DCD signals reflect the ready/ busy state of the printer. They will reflect the same state as if an actual serial port were being used on the printer.

| Bits | Field | Description |
| :--- | :--- | :--- |
| D15..D7 | RESERVED | (future use) |
| D6 | bOverRun | Received data has been discarded due to overrun in the device, |
| D5 | bParity | A parity error has occurred. |
| D4 | bFraming | A framing error has occurred. |
| D3 | bRingSignal | State of ring signal detection of the device. |
| D2 | bBreak | State of break detection mechanism of the device. |
| D1 | bTxCarrier | State of transmission carrier. This signal corresponds to V.24 signal 106 and RS-232 signal <br> DSR. |
| D0 | bRxCarrier | State of receiver carrier detection mechanism of device. This signal corresponds to V.24 <br> signal 109 and RS-232 signal DCD. |

Note: Only DSR and DCD are supported by the printer.
Table 43 Serial state bit definitions

When the Model 9000 is in the CDC class USB device support mode, it looks to the host like a Legacy UART. The printer does not actually do the USB to serial translation so many of the UART control features are implemented but don't really do anything useful. This USB class is provided to support legacy applications that only support a legacy serial port interface.

## USB TransAct Virtual Serial port

In addition to the USB class 7 Printer support class and the USB class 3 CDC interface, the Model 9000 supports a User class 255 interface that may be used with the TransAct Virtual Serial port driver.

This driver was developed before the CDC standard was released and provides the same basic functionality. The intent was to provide a virtual serial port in the PC to support legacy applications that do not support USB interfaces.

This interface is provided to support existing applications already using the TransAct Virtual Serial driver and should not be used for new applications.

## Appendix C: Internal Code Pages

| Code Page | Country Code/Language Set | Decimal <nh> <ni> | Hex <nh> <nI> |
| :---: | :---: | :---: | :---: |
| 64 | USA (Slashed 0) | 0,64 | 0H,040H |
| 65 | USA (Unslashed 0) | 0,65 | 0H,041H |
| 66 | British | 0,66 | 0H,042H |
| 67 | German | 0,67 | 0H,043H |
| 68 | French | 0,68 | 0H,044H |
| 69 | Swedish I | 0,69 | 0H,045H |
| 70 | Danish | 0,70 | 0H,046H |
| 71 | Norwegian | 0,71 | 0H,047H |
| 72 | Dutch | 0,72 | 0H,048H |
| 73 | Italian | 0,73 | 0H,049H |
| 74 | French Canadian | 0,74 | 0H,04AH |
| 75 | Spanish | 0,75 | 0H,04BH |
| 76 | Swedish II | 0,76 | 0H,04CH |
| 77 | Swedish III | 0,77 | 0H,04DH |
| 78 | Swedish IV | 0,78 | 0H,04EH |
| 79 | Turkish | 0,79 | 0H,04FH |
| 80 | Swiss I | 0,80 | 0H,050H |
| 81 | Swiss II | 0,81 | 0H,051H |
| 437 | USA | 1,181 | 1H,0B5H |
| 737 | Greek | 2,225 | 2H,0E1H |
| 850 | Multilingual | 3,82 | 3H,052H |
| 852 | East Europe Latin II-852 | 3,84 | 3H,054H |
| 855 | Cyrillic I-855 | 3,87 | 3H,057H |
| 857 | Turkey 857 | 3,89 | 3H,059H |
| 858 | Multilingual Euro | 3,90 | 3H,05AH |
| 866 | Cyrillic II-866 | 3,98 | $3 \mathrm{H}, 062 \mathrm{H}$ |
| 1004 | IS08859 | 3,236 | 3H,0ECH |
| 1250 | Windows 1250 Central Europe | 4,226 | 4H,0E2H |
| 1251 | Windows 1251 Cyrillic | 4,227 | 4H,0E3H |
| 1252 | Windows 1252 Latin 1 | 4,228 | 4H,0E4H |
| 1253 | Windows 1253 Greek | 4,229 | 4H,0E5H |
| 1254 | Windows 1254 Turkish | 4,230 | 4H,0E6H |
| 1257 | Windows 1257 Baltic | 4,233 | 4H,0E9H |
| 28591 | ISO8859-1 Latin 1 | 111,175 | 6FH,AFH |
| 28592 | ISO8859-2 Latin 2 | 111,176 | 6FH,BOH |
| 28593 | ISO8859-3 Latin 3 | 111,177 | 6FH,B1H |
| 28594 | ISO8859-4 Baltic 4 | 111,178 | 6FH,B2H |
| 28595 | ISO8859-5 Cyrillic | 111,179 | 6FH,B3H |
| 28597 | ISO8859-7 Greek | 111,181 | 6FH,B5H |
| 28599 | ISO8859-9 Turkish | 111,183 | 6FH,B7H |
| 28605 | ISO8859-15 Latin 9 | 111,189 | 6FH,BDH |

Note: The [ESC]! Select international character set command uses Code Pages 64-81 and represent code page maps. They are provided to support legacy applications. They are not recommended for new applications.

## Appendix D: ASCII Code Table

| Hex | Decimal | ASCII |
| :---: | :---: | :---: |
| 00 | 0 | NULL |
| 01 | 1 | SOH |
| 02 | 2 | STX |
| 03 | 3 | ETX |
| 04 | 4 | EOT |
| 05 | 5 | ENQ |
| 06 | 6 | ACK |
| 07 | 7 | BEL |
| 08 | 8 | BS |
| 09 | 9 | HT |
| 0 A | 10 | LF |
| OB | 11 | VT |
| OC | 12 | FF |
| 0D | 13 | CR |
| OE | 14 | SO |
| OF | 15 | SI |
| 10 | 16 | DLE |
| 11 | 17 | DC1 |
| 12 | 18 | DC2 |
| 13 | 19 | DC3 |
| 14 | 20 | DC4 |
| 15 | 21 | NAK |
| 16 | 22 | SYN |
| 17 | 23 | ETB |
| 18 | 24 | CAN |
| 19 | 25 | EM |
| 1A | 26 | SUB |
| 1B | 27 | ESC |
| 1C | 28 | FS |
| 1D | 29 | GS |
| 1E | 30 | RS |
| 1F | 31 | US |


| Hex | Decimal | ASCII | Hex | Decimal | ASCII | Hex | Decimal | ASCII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 32 | (SP) | 40 | 64 | @ | 60 | 96 |  |
| 21 | 33 | ! | 41 | 65 | A | 61 | 97 | a |
| 22 | 34 | " | 42 | 66 | B | 62 | 98 | b |
| 23 | 35 | \# | 43 | 67 | C | 63 | 99 | c |
| 24 | 36 | \$ | 44 | 68 | D | 64 | 100 | d |
| 25 | 37 | \% | 45 | 69 | E | 65 | 101 | e |
| 26 | 38 | \& | 46 | 70 | F | 66 | 102 | $f$ |
| 27 | 39 | ' | 47 | 71 | G | 67 | 103 | g |
| 28 | 40 | $($ | 48 | 72 | H | 68 | 104 | h |
| 29 | 41 | ) | 49 | 73 | 1 | 69 | 105 | i |
| 2A | 42 | * | 4A | 74 | $J$ | 6 A | 106 | j |
| 2B | 43 | + | 4 B | 75 | K | 6B | 107 | k |
| 2 C | 44 | , | 4 C | 76 | L | 6C | 108 | 1 |
| 2D | 45 | - | 4 D | 77 | M | 6D | 109 | m |
| 2E | 46 | . | 4E | 78 | N | 6E | 110 | n |
| 2 F | 47 | 1 | 4F | 79 | 0 | 6F | 111 | 0 |
| 30 | 48 | 0 | 50 | 80 | P | 70 | 112 | $p$ |
| 31 | 49 | 1 | 51 | 81 | Q | 71 | 113 | q |
| 32 | 50 | 2 | 52 | 82 | R | 72 | 114 | $r$ |
| 33 | 51 | 3 | 53 | 83 | S | 73 | 115 | s |
| 34 | 52 | 4 | 54 | 84 | T | 74 | 116 | t |
| 35 | 53 | 5 | 55 | 85 | U | 75 | 117 | u |
| 36 | 54 | 6 | 56 | 86 | V | 76 | 118 | v |
| 37 | 55 | 7 | 57 | 87 | W | 77 | 119 | w |
| 38 | 56 | 8 | 58 | 88 | X | 78 | 120 | X |
| 39 | 57 | 9 | 59 | 89 | Y | 79 | 121 | y |
| 3A | 58 | : | 5A | 90 | Z | 7A | 122 | z |
| 3B | 59 | ; | 5B | 91 | [ | 7B | 123 | \{ |
| 3C | 60 | < | 5C | 92 | 1 | 7C | 124 | 1 |
| 3D | 61 | = | 5D | 93 | ] | 7D | 125 | \} |
| 3E | 62 | $>$ | 5E | 94 | $\wedge$ | 7E | 126 | ~ |
| 3F | 63 | ? | 5F | 95 |  | 7F | 127 | (sp) |

## Appendix E: Unicode Character Addresses



Note: This information is based on the Unicode 3.0 Standard. For specific character locations see the Unicode standard.
Note: The Model 9000 does not contain all possible Unicode characters. The default character sets are defined by the WGL4 and GB18030 standards

| Unicode Range |  | Use |
| :---: | :---: | :---: |
| 0x0000 | 0x007F | C0 Controls and Basic Latin |
| $0 \times 0000$ | 0x001F | C0 controls |
| $0 \times 0020$ | 0x007F | ASCII |
| 0x0080 | 0x00FF | C1 Controls and Latin-1 Supplement |
| 0x00A0 | 0x00FF | Latin1 |
| $0 \times 0100$ | 0x017F | Latin Extended-A |
| $0 \times 0180$ | 0x024F | Latin Extended-B |
| $0 \times 0250$ | 0x02AF | IPA Extensions |
| 0x02B0 | 0x02FF | Spacing Modifier Letters |
| 0x0300 | 0x036F | Combining Diacritical Marks |
| $0 \times 0370$ | 0x03FF | Greek |
| $0 \times 0400$ | 0x04FF | Cyrillic |
| 0x0500 | 0x052F | Unassigned zone 0500-052F |
| $0 \times 0530$ | 0x058F | Armenian |
| $0 \times 0590$ | 0x05FF | Hebrew |
| 0x0600 | 0x06FF | Arabic |
| $0 \times 0700$ | 0x08FF | Unassigned 0700-08FF |
| $0 \times 0900$ | 0x097F | Devanagari. Based on ISCII 1988 |
| 0x0980 | 0x09FF | Bengali. Based on ISCII 1988 |
| 0x0A00 | 0x0A7F | Gurmukhi. Based on ISCII 1988 |
| 0x0A80 | 0x0AFF | Gujarati. Based on ISCII 1988 |
| 0x0B00 | 0x0B7F | Oriya. Based on ISCII 1988 |
| 0x0B80 | 0x0BFF | Tamil. Based on ISCII 1988 |
| 0x0C00 | 0x0C7F | Telugu. Based on ISCII 1988 |
| 0x0C80 | 0x0CFF | Kannada. Based on ISCII 1988 |
| 0x0D00 | 0x0D7F | Malayalam. Based on ISCII 1988 |
| 0x0D80 | 0x0DFF | Unassigned zone 0D80-0DFF |
| 0x0D80 | 0x0DFF | Sinhala (Pre-Unicode 2.0) |
| 0x0E00 | 0x0E7F | Thai. Based on TIS 620-2529 |
| 0x0E80 | 0x0EFF | Lao. Based on TIS 620-2529 |
| 0x0F00 | 0x0F7F | Burmese (Pre-Unicode 2.0) |
| 0x0F00 | 0x0FBF | Tibetan |
| 0x0F80 | 0x0FFF | Khmer (Pre-Unicode 2.0) |
| 0x1000 | 0x105F | Tibetan (Pre-Unicode 2.0) |
| 0x1060 | 0x109F | Mongolian (Pre-Unicode 2.0) |
| 0x10A0 | 0x10FF | Georgian |
| $0 \times 1100$ | 0x11FF | Hangul Jamo |
| 0x1100 | 0x11F9 | Korean combining alphabet |
| $0 \times 1200$ | 0x137F | Ethiopian (Post-Unicode 2.0) |
| 0x13A0 | 0x13FF | Cherokee (Post-Unicode 2.0) |
| 0x1400 | 0x167F | Canadian Syllabics (Post-Unicode 2.0) |
| 0x16A0 | 0x1DFF | Unassigned zone 16A0-1DFF |
| 0x1E00 | 0x1EFF | Latin Extended Additional |
| 0x1F00 | 0x1FFF | Greek Extended |
| 0x2000 | 0x206F | General Punctuation |


| 0x2070 | 0x209F | Superscripts and Subscripts |
| :---: | :---: | :---: |
| 0x20A0 | $0 \times 20 \mathrm{CF}$ | Currency Symbols |
| 0x20D0 | 0x20FF | Combining Diacritical Marks for Symbols |
| $0 \times 2100$ | $0 \times 214 \mathrm{~F}$ | Letter like Symbols |
| 0x2150 | $0 \times 218 \mathrm{~F}$ | Number Forms |
| 0x2190 | 0x21FF | Arrows |
| 0x2200 | 0x22FF | Mathematical Operators |
| 0x2300 | 0x23FF | Miscellaneous Technical |
| 0x2400 | $0 \times 243 \mathrm{~F}$ | Control Pictures |
| 0x2440 | 0x245F | Optical Character Recognition |
| 0x2460 | $0 \times 24 \mathrm{FF}$ | Enclosed Alphanumerics |
| 0x2500 | 0x257F | Box Drawing |
| 0x2580 | $0 \times 259 F$ | Block Elements |
| 0x25A0 | 0x25FF | Geometric Shapes |
| 0x2600 | 0x26FF | Miscellaneous Symbols |
| 0x2700 | 0x27BF | Dingbats |
| 0x27C0 | 0x27FF | Unassigned zone 27C0-27FF |
| 0x2800 | $0 \times 28 \mathrm{FF}$ | Braille Pattern Symbols (Post-Unicode 2.0) |
| 0x2900 | 0x2FFF | Unassigned zone 2900-2FFF |
| 0x3000 | 0x303F | CJK Symbols and Punctuation |
| 0x3040 | 0x309F | Hiragana |
| $0 \times 30 \mathrm{~A} 0$ | $0 \times 30 \mathrm{FF}$ | Katakana |
| $0 \times 3100$ | 0x312F | Bopomofo |
| $0 \times 3130$ | $0 \times 318 \mathrm{~F}$ | Hangul Compatibility Jamo. Based on KSC 5601 |
| 0x3190 | $0 \times 319 \mathrm{~F}$ | Kanbun |
| 0x31A0 | 0x31FF | Unassigned zone 31A0-31FF |
| 0x3200 | 0x32FF | Enclosed CJK Letters and Months |
| 0x3300 | $0 \times 33 F F$ | CJK Compatibility |
| 0x3400 | 0x4DFF | CJK Unified Ideograph Extension A (PostUnicode 2.0) |
| 0x4E00 | 0x9FA5 | CJK Unified Ideographs |
| 0x9FA6 | 0xABFF | Unassigned zone 9FA6-ABFF |
| 0xAC00 | 0xD7A3 | Hangul Syllables |
| 0xD7A4 | 0xD7FF | Unassigned zone D7A4-D7FF |
| 0xD800 | 0xDB7F | High Surrogates |
| 0xDB80 | 0xDBFF | Private Use High Surrogates |
| 0xDC00 | 0xDFFF | Low Surrogates |
| 0xE000 | 0xF8FF | Private Use Area |
| 0xF900 | 0xFAFF | CJK Compatibility Ideographs |
| 0xFB00 | 0xFB4F | Alphabetic Presentation Forms |
| 0xFB50 | 0xFDFF | Arabic Presentation Forms-A |
| 0xFE20 | 0xFE2F | Combining Half Marks |
| 0xFE30 | 0xFE4F | CJK Compatibility Forms |
| 0xFE50 | 0xFE6F | Small Form Variants |
| 0xFE70 | 0xFEFF | Arabic Presentation Forms-B |
| 0xFEFF | 0xFEFF | Special |
| 0xFFO0 | 0xFFEF | Half width and Full width Forms |
| 0xFFF0 | 0xFFFF | Specials |
| 0xFFFF | 0xFFFD | Specials |
| 0xFFFE | 0xFFFF | Not character codes |

## Appendix F: WGL4.0 Character Addresses

There are 654 Characters in this set and does not use address greater than 0xFFFF

| Unicode | Character |
| :---: | :---: |
| 0020 | space |
| 0021 | exclamation mark |
| 0022 | quotation mark |
| 0023 | number sign |
| 0024 | dollar sign |
| 0025 | percent sign |
| 0026 | ampersand |
| 0027 | apostrophe |
| 0028 | left parenthesis |
| 0029 | right parenthesis |
| 002a | asterisk |
| 002b | plus sign |
| 002c | comma |
| 002d | hyphen-minus |
| 002 e | period |
| 002f | slash |
| 0030 | digit zero |
| 0031 | digit one |
| 0032 | digit two |
| 0033 | digit three |
| 0034 | digit four |
| 0035 | digit five |
| 0036 | digit six |
| 0037 | digit seven |
| 0038 | digit eight |
| 0039 | digit nine |
| 003a | colon |
| 003b | semicolon |
| 003c | less-than sign |
| 003d | equals sign |
| 003 e | greater-than sign |
| 003f | question mark |
| 0040 | commercial at |
| 0041 | Latin capital letter a |
| 0042 | Latin capital letter b |
| 0043 | Latin capital letter c |
| 0044 | Latin capital letter d |
| 0045 | Latin capital letter e |
| 0046 | Latin capital letter f |
| 0047 | Latin capital letter g |
| 0048 | Latin capital letter h |
| 0049 | Latin capital letter i |
| 004a | Latin capital letter j |
| 004b | Latin capital letter k |
| 004c | Latin capital letter I |
| 004d | Latin capital letter m |
| 004e | Latin capital letter n |
| 004f | Latin capital letter o |
| 0050 | Latin capital letter p |
| 0051 | Latin capital letter q |
| 0052 | Latin capital letter $r$ |
| 0053 | Latin capital letter s |
| 0054 | Latin capital letter t |
| 0055 | Latin capital letter u |
| 0056 | Latin capital letter v |
| 0057 | Latin capital letter w |
| 0058 | Latin capital letter x |
| 0059 | Latin capital letter y |
| 005a | Latin capital letter z |
| 005b | left square bracket |
| 005c | backslash |
| 005d | right square bracket |
| 005e | circumflex accent |
| 005f | underline |
| 0060 | grave accent |
| 0061 | Latin small letter a |
| 0062 | Latin small letter b |
| 0063 | Latin small letter c |
| 0064 | Latin small letter d |
| 0065 | Latin small letter e |
| 0066 | Latin small letter f |
| 0067 | Latin small letter g |
| 0068 | Latin small letter h |
| 0069 | Latin small letter i |
| 006a | Latin small letter j |
| 006b | Latin small letter k |
| 006c | Latin small letter I |
| 006d | Latin small letter m |
| 006e | Latin small letter n |
| $006 f$ | Latin small letter o |


| 0070 | Latin small letter p |
| :---: | :---: |
| 0071 | Latin small letter q |
| 0072 | Latin small letter r |
| 0073 | Latin small letter s |
| 0074 | Latin small letter t |
| 0075 | Latin small letter u |
| 0076 | Latin small letter v |
| 0077 | Latin small letter w |
| 0078 | Latin small letter x |
| 0079 | Latin small letter y |
| 007a | Latin small letter z |
| 007b | left curly bracket |
| 007c | vertical line |
| 007d | right curly bracket |
| 007e | tilde |
| 00a0 | no-break space |
| 00a1 | inverted exclamation mark |
| 00a2 | cent sign |
| 00a3 | pound sign |
| 00a4 | currency sign |
| 00a5 | yen sign |
| 00a6 | broken bar |
| 00a7 | section sign |
| 00a8 | diaeresis |
| 00a9 | copyright sign |
| 00aa | feminine ordinal indicator |
| 00ab | left guillemet |
| 00ac | not sign |
| 00ad | soft hyphen |
| 00ae | registered trade mark sign |
| 00af | macron, overline |
| 00b0 | degree sign |
| 00b1 | plus-minus sign |
| 00b2 | superscript two |
| 00b3 | superscript three |
| 00b4 | acute accent |
| 00b5 | micro sign |
| 00b6 | paragraph sign |
| 00b7 | middle dot, kana conjoctive |
| 00b8 | cedilla |
| 00b9 | superscript one |
| 00ba | masculine ordinal indicator |
| 00bb | right guillemet |
| 00bc | vulgar fraction one quarter |
| 00bd | vulgar fraction one half |
| 00be | vulgar fraction three quarters |
| 00bf | inverted question mark |
| 00c0 | Latin capital letter a with grave accent |
| 00c1 | Latin capital letter a with acute accent |
| 00c2 | Latin capital letter a with circumflex accent |
| 00c3 | Latin capital letter a with tilde |
| 00c4 | Latin capital letter a with diaeresis |
| 00c5 | Latin capital letter a with ring above |
| 00c6 | Latin capital letter a with e |
| 00c7 | Latin capital letter c with cedilla |
| 00c8 | Latin capital letter e with grave accent |
| 00c9 | Latin capital letter e with acute accent |
| 00ca | Latin capital letter e with circumflex accent |
| 00cb | Latin capital letter e with diaeresis |
| 00cc | Latin capital letter i with grave accent |
| 00cd | Latin capital letter i with acute accent |
| 00ce | Latin capital letter i with circumflex accent |
| 00cf | Latin capital letter i with diaeresis |
| 00d0 | Latin capital letter eth |
| 00d1 | Latin capital letter n with tilde |
| 00d2 | Latin capital letter o with grave accent |
| 00d3 | Latin capital letter o with acute accent |
| 00d4 | Latin capital letter o with circumflex accent |
| 00d5 | Latin capital letter o with tilde |
| 00d6 | Latin capital letter o with diaeresis |
| 00d7 | multiplication sign |
| 00d8 | Latin capital letter o with oblique stroke |
| 00d9 | Latin capital letter u with grave accent |
| 00da | Latin capital letter u with acute accent |
| 00db | Latin capital letter u with circumflex accent |
| 00dc | Latin capital letter u with diaeresis |
| 00dd | Latin capital letter y with acute accent |
| 00de | Latin capital letter thorn |
| 00df | Latin small letter sharps |
| 00 e 0 | Latin small letter a with grave accent |
| 00e1 | Latin small letter a with acute accent |


| 00e2 | Latin small letter a with circumflex accent | 0139 | Latin capital letter I with acute accent |
| :---: | :---: | :---: | :---: |
| 00e3 | Latin small letter a with tilde | 013a | Latin small letter I with acute accent |
| 00e4 | Latin small letter a with diaeresis | 013b | Latin capital letter I with cedilla |
| 00e5 | Latin small letter a with ring above | 013c | Latin small letter I with cedilla |
| 00e6 | Latin small letter a with e | 013d | Latin capital letter I with hacek |
| 00e7 | Latin small letter c with cedilla | 013e | Latin small letter I with hacek |
| 00e8 | Latin small letter e with grave accent | 013f | Latin capital letter I with middle dot |
| 00e9 | Latin small letter e with acute accent | 0140 | Latin small letter I with middle dot |
| 00 ea | Latin small letter e with circumflex accent | 0141 | Latin capital letter I with stroke |
| 00 eb | Latin small letter e with diaeresis | 0142 | Latin small letter I with stroke |
| 00ec | Latin small letter i with grave accent | 0143 | Latin capital letter n with acute accent |
| 00ed | Latin small letter i with acute accent | 0144 | Latin small letter n with acute accent |
| 00ee | Latin small letter i with circumflex accent | 0145 | Latin capital letter n with cedilla |
| 00ef | Latin small letter i with diaeresis | 0146 | Latin small letter n with cedilla |
| 00f0 | Latin small letter eth | 0147 | Latin capital letter n with hacek |
| $00 f 1$ | Latin small letter n with tilde | 0148 | Latin small letter n with hacek |
| 00f2 | Latin small letter o with grave accent | 0149 | Latin small letter n preceded by apostrophe |
| 00f3 | Latin small letter o with acute accent | 014a | Latin capital letter eng |
| 00f4 | Latin small letter o with circumflex accent | 014b | Latin small letter eng |
| 00f5 | Latin small letter o with tilde | 014c | Latin capital letter o with macron |
| 00f6 | Latin small letter o with diaeresis | 014d | Latin small letter o with macron |
| $00 \not 7$ | division sign | 014e | Latin capital letter o with breve |
| 00f8 | Latin small letter o with oblique stroke | 014f | Latin small letter o with breve |
| 00f9 | Latin small letter u with grave accent | 0150 | Latin capital letter o with double acute accent |
| 00fa | Latin small letter u with acute accent | 0151 | Latin small letter o with double acute accent |
| 00fb | Latin small letter u with circumflex accent | 0152 | Latin capital ligature o with e |
| 00fc | Latin small letter u with diaeresis | 0153 | Latin small ligature o with e |
| 00fd | Latin small letter y with acute accent | 0154 | Latin capital letter r with acute accent |
| 00fe | Latin small letter thorn | 0155 | Latin small letter r with acute accent |
| 00ff | Latin small letter y with diaeresis | 0156 | Latin capital letter $r$ with cedilla |
| 0100 | Latin capital letter a with macron | 0157 | Latin small letter r with cedilla |
| 0101 | Latin small letter a with macron | 0158 | Latin capital letter r with hacek |
| 0102 | Latin capital letter a with breve | 0159 | Latin small letter r with hacek |
| 0103 | Latin small letter a with breve | 015a | Latin capital letter s with acute accent |
| 0104 | Latin capital letter a with ogonek | 015b | Latin small letter s with acute accent |
| 0105 | Latin small letter a with ogonek | 015c | Latin capital letter s with circumflex |
| 0106 | Latin capital letter c with acute accent | 015d | Latin small letter s with circumflex |
| 0107 | Latin small letter c with acute accent | 015e | Latin capital letter s with cedilla |
| 0108 | Latin capital letter c with circumflex | $015 f$ | Latin small letter s with cedilla |
| 0109 | Latin small letter c with circumflex | 0160 | Latin capital letter s with hacek |
| 010a | Latin capital letter c with dot above | 0161 | Latin small letter s with hacek |
| 010b | Latin small letter c with dot above | 0162 | Latin capital letter t with cedilla |
| 010c | Latin capital letter c with caron | 0163 | Latin small letter t with cedilla |
| 010d | Latin small letter c with caron | 0164 | Latin capital letter t with hacek |
| 010e | Latin capital letter d with hacek | 0165 | Latin small letter t with hacek |
| 010f | Latin small letter d with hacek | 0166 | Latin capital letter t with stroke |
| 0110 | Latin capital letter d with stroke | 0167 | Latin small letter t with stroke |
| 0111 | Latin small letter d with stroke | 0168 | Latin capital letter u with tilde |
| 0112 | Latin capital letter e with macron | 0169 | Latin small letter u with tilde |
| 0113 | Latin small letter e with macron | 016a | Latin capital letter u with macron |
| 0114 | Latin capital letter e with breve | 016b | Latin small letter u with macron |
| 0115 | Latin small letter e with breve | 016c | Latin capital letter u with breve |
| 0116 | Latin capital letter e with dot above | 016d | Latin small letter u with breve |
| 0117 | Latin small letter e with dot above | 016e | Latin capital letter u with ring above |
| 0118 | Latin capital letter e with ogenek | 016 f | Latin small letter u with ring above |
| 0119 | Latin small letter e with ogenek | 0170 | Latin capital letter u with double acute accent |
| 011a | Latin capital letter e with hacek | 0171 | Latin small letter u with double acute accent |
| 011b | Latin small letter e with hacek | 0172 | Latin capital letter u with ogonek |
| 011c | Latin capital letter g with circumflex | 0173 | Latin small letter u with ogonek |
| 011d | Latin small letter g with circumflex | 0174 | Latin capital letter w with circumflex |
| 011e | Latin capital letter g with breve | 0175 | Latin cmall letter w with circumflex |
| 011f | Latin small letter g with breve | 0176 | Latin capital letter y with circumflex |
| 0120 | Latin capital letter g with dot above | 0177 | Latin small letter y with circumflex |
| 0121 | Latin small letter g with dot above | 0178 | Latin capital letter y with diaeresis |
| 0122 | Latin capital letter g with cedilla | 0179 | Latin capital letter z with acute accent |
| 0123 | Latin small letter g with cedilla | 017a | Latin small letter z with acute accent |
| 0124 | Latin capital letter h with circumflex | 017b | Latin capital letter z with dot above |
| 0125 | Latin small letter h with circumflex | 017c | Latin small letter z with dot above |
| 0126 | Latin capital letter h with stroke | 017d | Latin capital letter z with hacek |
| 0127 | Latin small letter h with stroke | 017e | Latin small letter z with hacek |
| 0128 | Latin capital letter i with tilde | 017f | Latin small letter long s |
| 0129 | Latin small letter i with tilde | 0192 | Latin small letter script f,florin sign |
| 012a | Latin capital letter i with macron | 01fa | Latin capital letter a with ring above and acute |
| 012b | Latin small letter i with macron | 01fb | Latin small letter a with ring above and acute |
| 012c | Latin capital letter i with breve | 01fc | Latin capital ligature ae with acute |
| 012d | Latin small letter i with breve | 01fd | Latin small ligature ae with acute |
| 012 e | Latin capital letter i with ogonek | 01fe | Latin capital letter o with stroke and acute |
| 012f | Latin small letter i with ogonek | 01ff | Latin small letter o with stroke and acute |
| 0130 | Latin capital letter i with dot above | 02c6 | nonspacing circumflex accent |
| 0131 | Latin small letter i without dot above | 02c7 | modifier letter hacek |
| 0132 | Latin capital ligature ij | 02c9 | modifier letter macron |
| 0133 | Latin small ligature ij | 02d8 | breve |
| 0134 | Latin capital letter j with circumflex | 02d9 | dot above |
| 0135 | Latin small letter j with circumflex | 02da | ring above |
| 0136 | Latin capital letter k with cedilla | 02db | ogonek |
| 0137 | Latin small letter k with cedilla | 02dc | nonspacing tilde |
| 0138 | Latin small letter kra | 02dd | modifier letter double prime |


| 0384 | Greek tonos | 0411 | Cyrillic capital letter be |
| :---: | :---: | :---: | :---: |
| 0385 | Greek dialytika tonos | 0412 | Cyrillic capital letter ve |
| 0386 | Greek capital letter alpha with tonos | 0413 | Cyrillic capital letter ghe |
| 0387 | Greek ano teleia | 0414 | Cyrilic capital letter de |
| 0388 | Greek capital letter epsilon with tonos | 0415 | Cyrillic capital letter ie |
| 0389 | Greek capital letter eta with tonos | 0416 | Cyrillic capital letter zhe |
| 038a | Greek capital letter iota with tonos | 0417 | Cyrillic capital letter ze |
| 038c | Greek capital letter omicron with tonos | 0418 | Cyrillic capital letter i |
| 038 e | Greek capital letter upsilon with tonos | 0419 | Cyrillic capital letter short i |
| 038 f | Greek capital letter omega with tonos | 041a | Cyrillic capital letter ka |
| 0390 | Greek small letter iota with dialytika and tonos | 041b | Cyrillic capital letter el |
| 0391 | Greek capital letter alpha | 041c | Cyrillic capital letter em |
| 0392 | Greek capital letter beta | 041d | Cyrillic capital letter en |
| 0393 | Greek capital letter gamma | 041e | Cyrillic capital letter o |
| 0394 | Greek capital letter delta | 041f | Cyrillic capital letter pe |
| 0395 | Greek capital letter epsilon | 0420 | Cyrillic capital letter er |
| 0396 | Greek capital letter zeta | 0421 | Cyrillic capital letter es |
| 0397 | Greek capital letter eta | 0422 | Cyrillic capital letter te |
| 0398 | Greek capital letter theta | 0423 | Cyrillic capital letter u |
| 0399 | Greek capital letter iota | 0424 | Cyrillic capital letter ef |
| 039a | Greek capital letter kappa | 0425 | Cyrillic capital letter ha |
| 039b | Greek capital letter lamda | 0426 | Cyrillic capital letter tse |
| 039c | Greek capital letter mu | 0427 | Cyrillic capital letter che |
| 039d | Greek capital letter nu | 0428 | Cyrillic capital letter sha |
| 039e | Greek capital letter xi | 0429 | Cyrillic capital letter shcha |
| 039f | Greek capital letter omicron | 042a | Cyrillic capital letter hard sign |
| 03a0 | Greek capital letter pi | 042b | Cyrillic capital letter yeru |
| 03a1 | Greek capital letter rho | 042c | Cyrillic capital letter soft sign |
| 03a3 | Greek capital letter sigma | 042d | Cyrillic capital letter e |
| 03a4 | Greek capital letter tau | 042e | Cyrillic capital letter yu |
| 03a5 | Greek capital letter upsilon | 042f | Cyrillic capital letter ya |
| $03 \mathrm{a6}$ | Greek capital letter phi | 0430 | Cyrilic small letter a |
| 03a7 | Greek capital letter chi | 0431 | Cyrilic small letter be |
| $03 \mathrm{a8}$ | Greek capital letter psi | 0432 | Cyrillic small letter ve |
| 03 a 9 | Greek capital letter omega | 0433 | Cyrillic small letter ghe |
| 03aa | Greek capital letter iota with dialytika | 0434 | Cyrillic small letter de |
| 03ab | Greek capital letter upsilon with dialytika | 0435 | Cyrillic small letter ie |
| 03ac | Greek small letter alpha with tonos | 0436 | Cyrillic small letter zhe |
| 03ad | Greek small letter epsilon with tonos | 0437 | Cyrilic small letter ze |
| 03ae | Greek small letter eta with tonos | 0438 | Cyrillic small letter i |
| 03af | Greek small letter iota with tonos | 0439 | Cyrillic small letter short i |
| 03b0 | Greek small letter upsilon with dialytika and tonos | 043a | Cyrillic small letter ka |
| 03b1 | Greek small letter alpha | 043b | Cyrillic small letter el |
| 03b2 | Greek small letter beta | 043c | Cyrillic small letter em |
| 03b3 | Greek small letter gamma | 043d | Cyrillic small letter en |
| 03b4 | Greek small letter delta | 043 e | Cyrillic small letter o |
| 03b5 | Greek small letter epsilon | 043f | Cyrillic small letter pe |
| 03b6 | Greek small letter zeta | 0440 | Cyrillic small letter er |
| 03b7 | Greek small letter eta | 0441 | Cyrillic small letter es |
| 03b8 | Greek small letter theta | 0442 | Cyrillic small letter te |
| 03b9 | Greek small letter iota | 0443 | Cyrillic small letter u |
| 03ba | Greek small letter kappa | 0444 | Cyrillic small letter ef |
| 03bb | Greek small letter lamda | 0445 | Cyrillic small letter ha |
| 03bc | Greek small letter mu | 0446 | Cyrillic small letter tse |
| 03bd | Greek small letter nu | 0447 | Cyrillic small letter che |
| 03be | Greek small letter xi | 0448 | Cyrillic small letter sha |
| 03bf | Greek small letter omicron | 0449 | Cyrillic small letter shcha |
| 03c0 | Greek small letter pi | 044a | Cyrillic small letter hard sign |
| 03c1 | Greek small letter rho | 044b | Cyrillic small letter yeru |
| 03c2 | Greek small letter final sigma | 044c | Cyrillic small letter soft sign |
| 03c3 | Greek small letter sigma | 044d | Cyrillic small letter e |
| 03c4 | Greek small letter tau | 044e | Cyrilic small letter yu |
| 03c5 | Greek small letter upsilon | 044f | Cyrilic small letter ya |
| 03c6 | Greek small letter phi | 0451 | Cyrillic small letter io |
| 03c7 | Greek small letter chi | 0452 | Cyrillic small letter dje |
| 03c8 | Greek small letter psi | 0453 | Cyrillic small letter gje |
| 03c9 | Greek small letter omega | 0454 | Cyrillic small letter ukrainian ie |
| 03ca | Greek small letter iota with dialytika | 0455 | Cyrillic small letter dze |
| 03cb | Greek small letter upsilon with dialytika | 0456 | Cyrillic small letter byelorussian-ukrainian i |
| 03cc | Greek small letter omicron with tonos | 0457 | Cyrillic small letter yi |
| 03cd | Greek small letter upsilon with tonos | 0458 | Cyrillic small letter je |
| 03ce | Greek small letter omega with tonos | 0459 | Cyrilic small letter lje |
| 0401 | Cyrillic capital letter io | 045a | Cyrillic small letter nje |
| 0402 | Cyrillic capital letter dje | 045b | Cyrillic small letter tshe |
| 0403 | Cyrillic capital letter gje | 045c | Cyrillic small letter kje |
| 0404 | Cyrillic capital letter ukrainian ie | 045e | Cyrillic small letter short u |
| 0405 | Cyrillic capital letter dze | 045f | Cyrillic small letter dzhe |
| 0406 | Cyrillic capital letter byelorussian-ukrainian i | 0490 | Cyrillic capital letter ghe with upturn |
| 0407 | Cyrillic capital letter yi | 0491 | Cyrillic small letter ghe with upturn |
| 0408 | Cyrillic capital letter je | 1 e 80 | Latin capital letter w with grave |
| 0409 | Cyrillic capital letter lje | 1 e 81 | Latin small letter w with grave |
| 040a | Cyrillic capital letter nje | 1 e 82 | Latin capital letter w with acute |
| 040b | Cyrilic capital letter tshe | 1 e 83 | Latin small letter w with acute |
| 040c | Cyrillic capital letter kje | 1 e 84 | Latin capital letter w with diaeresis |
| 040e | Cyrillic capital letter short u | 1 e 85 | Latin small letter w with diaeresis |
| 040f | Cyrillic capital letter dzhe | 1ef2 | Latin capital letter y with grave |
| 0410 | Cyrillic capital letter a | 1ef3 | Latin small letter y with grave |


| 2013 | en dash |
| :---: | :---: |
| 2014 | em dash |
| 2015 | horizontal bar |
| 2017 | double low line |
| 2018 | left single quotation mark |
| 2019 | right single quotation mark |
| 201a | single low-9 quotation mark |
| 201b | single high-reversed-9 quotation mark |
| 201c | left double quotation mark |
| 201d | right double quotation mark |
| 201e | double low-9 quotation mark |
| 2020 | dagger |
| 2021 | double dagger |
| 2022 | bullet |
| 2026 | horizontal ellipsis |
| 2030 | per mille sign |
| 2032 | prime |
| 2033 | double prime |
| 2039 | single left-pointing angle quotation mark |
| 203a | single right-pointing angle quotation mark |
| 203c | double exclamation mark |
| 203e | overline |
| 2044 | fraction slash |
| 207f | superscript Latin small letter n |
| 20a3 | french franc sign |
| 20a4 | lira sign |
| 20a7 | peseta sign |
| 20ac | euro currency symbol |
| 2105 | care of |
| 2113 | script small I |
| 2116 | numero sign |
| 2122 | trademark sign |
| 2126 | ohm sign |
| 212e | estimated symbol |
| 215b | vulgar fraction one eighth |
| 215c | vulgar fraction three eighths |
| 215d | vulgar fraction five eighths |
| 215 e | vulgar fraction seven eighths |
| 2190 | leftwards arrow |
| 2191 | upwards arrow |
| 2192 | rightwards arrow |
| 2193 | downwards arrow |
| 2194 | left right arrow |
| 2195 | up down arrow |
| 21a8 | up down arrow with base |
| 2202 | partial differential |
| 2206 | increment |
| 220 f | n-ary product |
| 2211 | n -ary summation |
| 2212 | minus sign |
| 2215 | division slash |
| 2219 | bullet operator |
| 221a | square root |
| 221e | infinity |
| 221f | right angle |
| 2229 | intersection |
| 222b | integral |
| 2248 | almost equal to |
| 2260 | not equal to |
| 2261 | identical to |
| 2264 | less-than or equal to |
| 2265 | greater-than or equal to |
| 2302 | house |
| 2310 | reversed not sign |
| 2320 | top half integral |
| 2321 | bottom half integral |
| 2500 | box drawings light horizontal |
| 2502 | box drawings light vertical |
| 250c | box drawings light down and right |
| 2510 | box drawings light down and left |
| 2514 | box drawings light up and right |
| 2518 | box drawings light up and left |
| 251c | box drawings light vertical and right |


| 2524 | box drawings light vertical and left |
| :---: | :---: |
| 252c | box drawings light down and horizontal |
| 2534 | box drawings light up and horizontal |
| 253c | box drawings light vertical and horizontal |
| 2550 | box drawings double horizontal |
| 2551 | box drawings double vertical |
| 2552 | box drawings down single and right double |
| 2553 | box drawings down double and right single |
| 2554 | box drawings double down and right |
| 2555 | box drawings down single and left double |
| 2556 | box drawings down double and left single |
| 2557 | box drawings double down and left |
| 2558 | box drawings up single and right double |
| 2559 | box drawings up double and right single |
| 255a | box drawings double up and right |
| 255b | box drawings up single and left double |
| 255c | box drawings up double and left single |
| 255d | box drawings double up and left |
| 255e | box drawings vertical single and right double |
| 255f | box drawings vertical double and right single |
| 2560 | box drawings double vertical and right |
| 2561 | box drawings vertical single and left double |
| 2562 | box drawings vertical double and left single |
| 2563 | box drawings double vertical and left |
| 2564 | box drawings down single and horizontal double |
| 2565 | box drawings down double and horizontal single |
| 2566 | box drawings double down and horizontal |
| 2567 | box drawings up single and horizontal double |
| 2568 | box drawings up double and horizontal single |
| 2569 | box drawings double up and horizontal |
| 256a | box drawings vertical single and horizontal double |
| 256b | box drawings vertical double and horizontal single |
| 256c | box drawings double vertical and horizontal |
| 2580 | upper half block |
| 2584 | lower half block |
| 2588 | full block |
| 258c | left half block |
| 2590 | right half block |
| 2591 | light shade |
| 2592 | medium shade |
| 2593 | dark shade |
| 25a0 | black square |
| 25a1 | white square |
| 25aa | black small square |
| 25ab | white small square |
| 25ac | black rectangle |
| 25b2 | black up-pointing triangle |
| 25ba | black right-pointing pointer |
| 25bc | black down-pointing triangle |
| 25c4 | black left-pointing pointer |
| 25ca | lozenge |
| 25cb | white circle |
| 25cf | black circle |
| 25d8 | inverse bullet |
| 25d9 | inverse white circle |
| 25e6 | white bullet |
| 263a | white smiling face |
| 263b | black smiling face |
| 263c | white sun with rays |
| 2640 | female sign |
| 2642 | male sign |
| 2660 | black spade suit |
| 2663 | black club suit |
| 2665 | black heart suit |
| 2666 | black diamond suit |
| 266a | eighth note |
| 266b | Beamed eighth notes |
| f001 | fi ligature |
| f002 | fl ligature |
| fb01 | Fi ligature |
| fb02 | Fl ligature |

Note: This information is based on the Microsoft's Typography web page

## Appendix G: GB18030 Character Addresses

There are 28575 Characters in this set and does not use address greater than 0xFFFF

| UNICODE | CHARACTER |
| :---: | :---: |
| 0020 | SPACE |
| 0021 | EXCLAMATION MARK |
| 0022 | QUOTATION MARK |
| 0023 | NUMBER SIGN |
| 0024 | DOLLAR SIGN |
| 0025 | PERCENT SIGN |
| 0026 | AMPERSAND |
| 0027 | APOSTROPHE |
| 0028 | LEFT PARENTHESIS |
| 0029 | RIGHT PARENTHESIS |
| 002A | ASTERISK |
| 002B | PLUS SIGN |
| 002C | COMMA |
| 002D | HYPHEN-MINUS |
| 002E | FULL STOP |
| 002F | SOLIDUS |
| 0030 | DIGIT ZERO |
| 0031 | DIGIT ONE |
| 0032 | DIGIT TWO |
| 0033 | DIGIT THREE |
| 0034 | DIGIT FOUR |
| 0035 | DIGIT FIVE |
| 0036 | DIGIT SIX |
| 0037 | DIGIT SEVEN |
| 0038 | DIGIT EIGHT |
| 0039 | DIGIT NINE |
| 003A | COLON |
| 003B | SEMICOLON |
| 003C | LESS-THAN SIGN |
| 003D | EQUALS SIGN |
| 003E | GREATER-THAN SIGN |
| 003F | QUESTION MARK |
| 0040 | COMMERCIAL AT |
| 0041 | LATIN CAPITAL LETTER A |
| 0042 | LATIN CAPITAL LETTER B |
| 0043 | LATIN CAPITAL LETTER C |
| 0044 | LATIN CAPITAL LETTER D |
| 0045 | LATIN CAPITAL LETTER E |
| 0046 | LATIN CAPITAL LETTER F |
| 0047 | LATIN CAPITAL LETTER G |
| 0048 | LATIN CAPITAL LETTER H |
| 0049 | LATIN CAPITAL LETTER I |
| 004A | LATIN CAPITAL LETTER J |
| 004B | LATIN CAPITAL LETTER K |
| 004C | LATIN CAPITAL LETTER L |
| 004D | LATIN CAPITAL LETTER M |
| 004E | LATIN CAPITAL LETTER N |
| 004F | LATIN CAPITAL LETTER O |
| 0050 | LATIN CAPITAL LETTER P |
| 0051 | LATIN CAPITAL LETTER Q |
| 0052 | LATIN CAPITAL LETTER R |
| 0053 | LATIN CAPITAL LETTER S |
| 0054 | LATIN CAPITAL LETTER T |
| 0055 | LATIN CAPITAL LETTER U |
| 0056 | LATIN CAPITAL LETTER V |
| 0057 | LATIN CAPITAL LETTER W |
| 0058 | LATIN CAPITAL LETTER X |
| 0059 | LATIN CAPITAL LETTER Y |
| 005A | LATIN CAPITAL LETTER Z |
| 005B | LEFT SQUARE BRACKET |
| 005C | REVERSE SOLIDUS |
| 005D | RIGHT SQUARE BRACKET |
| 005E | CIRCUMFLEX ACCENT |
| 005F | LOW LINE |
| 0060 | GRAVE ACCENT |
| 0061 | LATIN SMALL LETTER A |
| 0062 | LATIN SMALL LETTER B |
| 0063 | LATIN SMALL LETTER C |
| 0064 | LATIN SMALL LETTER D |
| 0065 | LATIN SMALL LETTER E |
| 0066 | LATIN SMALL LETTER F |
| 0067 | LATIN SMALL LETTER G |
| 0068 | LATIN SMALL LETTER H |
| 0069 | LATIN SMALL LETTER I |
| 006A | LATIN SMALL LETTER J |
| 006B | LATIN SMALL LETTER K |
| 006C | LATIN SMALL LETTER L |
| 006D | LATIN SMALL LETTER M |
| 006E | LATIN SMALL LETTER N |
| 006F | LATIN SMALL LETTER O |


| 0070 | LATIN SMALL LETTER P |
| :---: | :---: |
| 0071 | LATIN SMALL LETTER Q |
| 0072 | LATIN SMALL LETTER R |
| 0073 | LATIN SMALL LETTER S |
| 0074 | LATIN SMALL LETTER T |
| 0075 | LATIN SMALL LETTER U |
| 0076 | LATIN SMALL LETTER V |
| 0077 | LATIN SMALL LETTER W |
| 0078 | LATIN SMALL LETTER X |
| 0079 | LATIN SMALL LETTER Y |
| 007A | LATIN SMALL LETTER Z |
| 007B | LEFT CURLY BRACKET |
| 007C | VERTICAL LINE |
| 007D | RIGHT CURLY BRACKET |
| 007E | TILDE |
| 007 F | <CONTROL> |
| 00A4 | CURRENCY SIGN |
| 00A7 | SECTION SIGN |
| 00A8 | DIAERESIS |
| 00B0 | DEGREE SIGN |
| 00B1 | PLUS-MINUS SIGN |
| 00B7 | MIDDLE DOT |
| 00D7 | MULTIPLICATION SIGN |
| 00E0 | LATIN SMALL LETTER A WITH GRAVE |
| 00E1 | LATIN SMALL LETTER A WITH ACUTE |
| 00E8 | LATIN SMALL LETTER E WITH GRAVE |
| 00E9 | LATIN SMALL LETTER E WITH ACUTE |
| 00EA | LATIN SMALL LETTER E WITH CIRCUMFLEX |
| 00EC | LATIN SMALL LETTER I WITH GRAVE |
| O0ED | LATIN SMALL LETTER I WITH ACUTE |
| 00F2 | LATIN SMALL LETTER O WITH GRAVE |
| 00F3 | LATIN SMALL LETTER O WITH ACUTE |
| 00F7 | DIVISION SIGN |
| 00F9 | LATIN SMALL LETTER U WITH GRAVE |
| 00FA | LATIN SMALL LETTER U WITH ACUTE |
| 00FC | LATIN SMALL LETTER U WITH DIAERESIS |
| 0101 | LATIN SMALL LETTER A WITH MACRON |
| 0113 | LATIN SMALL LETTER E WITH MACRON |
| 011B | LATIN SMALL LETTER E WITH CARON |
| 012B | LATIN SMALL LETTER I WITH MACRON |
| 0144 | LATIN SMALL LETTER N WITH ACUTE |
| 0148 | LATIN SMALL LETTER N WITH CARON |
| 014D | LATIN SMALL LETTER O WITH MACRON |
| 016B | LATIN SMALL LETTER U WITH MACRON |
| 01CE | LATIN SMALL LETTER A WITH CARON |
| 01D0 | LATIN SMALL LETTER I WITH CARON |
| 01D2 | LATIN SMALL LETTER O WITH CARON |
| 01D4 | LATIN SMALL LETTER U WITH CARON |
| 01D6 | LATIN SMALL LETTER U WITH DIAERESIS AND MACRON |
| 01D8 | LATIN SMALL LETTER U WITH DIAERESIS AND ACUTE |
| 01DA | LATIN SMALL LETTER U WITH DIAERESIS AND CARON |
| 01DC | LATIN SMALL LETTER U WITH DIAERESIS AND GRAVE |
| 0251 | LATIN SMALL LETTER ALPHA |
| 0261 | LATIN SMALL LETTER SCRIPT G |
| 02 C 7 | CARON (MANDARIN CHINESE THIRD TONE) |
| $02 \mathrm{C9}$ | MODIFIER LETTER MACRON (MANDARIN CHINESE FIRST TONE) |
| 02CA | MODIFIER LETTER ACUTE ACCENT (MANDARIN CHINESE SECOND TONE) |
| 02CB | MODIFIER LETTER GRAVE ACCENT (MANDARIN CHINESE FOURTH TONE) |
| 02D9 | DOT ABOVE (MANDARIN CHINESE LIGHT TONE) |
| 0391 | GREEK CAPITAL LETTER ALPHA |
| 0392 | GREEK CAPITAL LETTER BETA |
| 0393 | GREEK CAPITAL LETTER GAMMA |
| 0394 | GREEK CAPITAL LETTER DELTA |
| 0395 | GREEK CAPITAL LETTER EPSILON |
| 0396 | GREEK CAPITAL LETTER ZETA |
| 0397 | GREEK CAPITAL LETTER ETA |
| 0398 | GREEK CAPITAL LETTER THETA |
| 0399 | GREEK CAPITAL LETTER IOTA |
| 039A | GREEK CAPITAL LETTER KAPPA |
| 039B | GREEK CAPITAL LETTER LAMDA |
| 039 C | GREEK CAPITAL LETTER MU |
| 039D | GREEK CAPITAL LETTER NU |
| 039E | GREEK CAPITAL LETTER XI |
| 039F | GREEK CAPITAL LETTER OMICRON |


| 03A0 | GREEK CAPITAL LETTER PI |
| :---: | :---: |
| 03A1 | GREEK CAPITAL LETTER RHO |
| 03A3 | GREEK CAPITAL LETTER SIGMA |
| 03A4 | GREEK CAPITAL LETTER TAU |
| 03A5 | GREEK CAPITAL LETTER UPSILON |
| 03A6 | GREEK CAPITAL LETTER PHI |
| 03A7 | GREEK CAPITAL LETTER CHI |
| 03A8 | GREEK CAPITAL LETTER PSI |
| 03A9 | GREEK CAPITAL LETTER OMEGA |
| 03B1 | GREEK SMALL LETTER ALPHA |
| 03B2 | GREEK SMALL LETTER BETA |
| 03B3 | GREEK SMALL LETTER GAMMA |
| 03B4 | GREEK SMALL LETTER DELTA |
| 03B5 | GREEK SMALL LETTER EPSILON |
| 03B6 | GREEK SMALL LETTER ZETA |
| 03B7 | GREEK SMALL LETTER ETA |
| 03B8 | GREEK SMALL LETTER THETA |
| 03B9 | GREEK SMALL LETTER IOTA |
| 03BA | GREEK SMALL LETTER KAPPA |
| 03BB | GREEK SMALL LETTER LAMDA |
| 03BC | GREEK SMALL LETTER MU |
| 03BD | GREEK SMALL LETTER NU |
| 03BE | GREEK SMALL LETTER XI |
| 03BF | GREEK SMALL LETTER OMICRON |
| 03C0 | GREEK SMALL LETTER PI |
| 03C1 | GREEK SMALL LETTER RHO |
| 03C3 | GREEK SMALL LETTER SIGMA |
| 03C4 | GREEK SMALL LETTER TAU |
| 03C5 | GREEK SMALL LETTER UPSILON |
| 03C6 | GREEK SMALL LETTER PHI |
| 03C7 | GREEK SMALL LETTER CHI |
| 03C8 | GREEK SMALL LETTER PSI |
| 03C9 | GREEK SMALL LETTER OMEGA |
| 0401 | CYRILLIC CAPITAL LETTER IO |
| 0410 | CYRILLIC CAPITAL LETTER A |
| 0411 | CYRILLIC CAPITAL LETTER BE |
| 0412 | CYRILLIC CAPITAL LETTER VE |
| 0413 | CYRILLIC CAPITAL LETTER GHE |
| 0414 | CYRILLIC CAPITAL LETTER DE |
| 0415 | CYRILLIC CAPITAL LETTER IE |
| 0416 | CYRILLIC CAPITAL LETTER ZHE |
| 0417 | CYRILLIC CAPITAL LETTER ZE |
| 0418 | CYRILLIC CAPITAL LETTER I |
| 0419 | CYRILLIC CAPITAL LETTER SHORT I |
| 041A | CYRILLIC CAPITAL LETTER KA |
| 041B | CYRILLIC CAPITAL LETTER EL |
| 041C | CYRILLIC CAPITAL LETTER EM |
| 041D | CYRILLIC CAPITAL LETTER EN |
| 041E | CYRILLIC CAPITAL LETTER O |
| 041F | CYRILLIC CAPITAL LETTER PE |
| 0420 | CYRILLIC CAPITAL LETTER ER |
| 0421 | CYRILLIC CAPITAL LETTER ES |
| 0422 | CYRILLIC CAPITAL LETTER TE |
| 0423 | CYRILLIC CAPITAL LETTER U |
| 0424 | CYRILLIC CAPITAL LETTER EF |
| 0425 | CYRILLIC CAPITAL LETTER HA |
| 0426 | CYRILLIC CAPITAL LETTER TSE |
| 0427 | CYRILLIC CAPITAL LETTER CHE |
| 0428 | CYRILLIC CAPITAL LETTER SHA |
| 0429 | CYRILLIC CAPITAL LETTER SHCHA |
| 042A | CYRILLIC CAPITAL LETTER HARD SIGN |
| 042B | CYRILLIC CAPITAL LETTER YERU |
| 042C | CYRILLIC CAPITAL LETTER SOFT SIGN |
| 042D | CYRILLIC CAPITAL LETTER E |
| 042E | CYRILLIC CAPITAL LETTER YU |
| 042F | CYRILLIC CAPITAL LETTER YA |
| 0430 | CYRILLIC SMALL LETTER A |
| 0431 | CYRILLIC SMALL LETTER BE |
| 0432 | CYRILLIC SMALL LETTER VE |
| 0433 | CYRILLIC SMALL LETTER GHE |
| 0434 | CYRILLIC SMALL LETTER DE |
| 0435 | CYRILLIC SMALL LETTER IE |
| 0436 | CYRILLIC SMALL LETTER ZHE |
| 0437 | CYRILLIC SMALL LETTER ZE |
| 0438 | CYRILLIC SMALL LETTER I |
| 0439 | CYRILLIC SMALL LETTER SHORT I |
| 043A | CYRILLIC SMALL LETTER KA |
| 043B | CYRILLIC SMALL LETTER EL |
| 043C | CYRILLIC SMALL LETTER EM |
| 043D | CYRILLIC SMALL LETTER EN |
| 043E | CYRILLIC SMALL LETTER O |
| 043F | CYRILLIC SMALL LETTER PE |
| 0440 | CYRILLIC SMALL LETTER ER |
| 0441 | CYRILLIC SMALL LETTER ES |
| 0442 | CYRILLIC SMALL LETTER TE |
| 0443 | CYRILLIC SMALL LETTER U |
| 0444 | CYRILLIC SMALL LETTER EF |


| 0445 | CYRILLIC SMALL LETTER HA |
| :---: | :---: |
| 0446 | CYRILLIC SMALL LETTER TSE |
| 0447 | CYRILLIC SMALL LETTER CHE |
| 0448 | CYRILLIC SMALL LETTER SHA |
| 0449 | CYRILLIC SMALL LETTER SHCHA |
| 044A | CYRILLIC SMALL LETTER HARD SIGN |
| 044B | CYRILLIC SMALL LETTER YERU |
| 044C | CYRILLIC SMALL LETTER SOFT SIGN |
| 044D | CYRILLIC SMALL LETTER E |
| 044E | CYRILLIC SMALL LETTER YU |
| 044F | CYRILLIC SMALL LETTER YA |
| 0451 | CYRILLIC SMALL LETTER IO |
| 2010 | HYPHEN |
| 2013 | EN DASH |
| 2014 | EM DASH |
| 2015 | HORIZONTAL BAR |
| 2016 | DOUBLE VERTICAL LINE |
| 2018 | LEFT SINGLE QUOTATION MARK |
| 2019 | RIGHT SINGLE QUOTATION MARK |
| 201C | LEFT DOUBLE QUOTATION MARK |
| 201D | RIGHT DOUBLE QUOTATION MARK |
| 2025 | TWO DOT LEADER |
| 2026 | HORIZONTAL ELLIPSIS |
| 2030 | PER MILLE SIGN |
| 2032 | PRIME |
| 2033 | DOUBLE PRIME |
| 2035 | REVERSED PRIME |
| 203B | REFERENCE MARK |
| 20AC | EURO SIGN |
| 2103 | DEGREE CELSIUS |
| 2105 | CARE OF |
| 2109 | DEGREE FAHRENHEIT |
| 2116 | NUMERO SIGN |
| 2121 | TELEPHONE SIGN |
| 2160 | ROMAN NUMERAL ONE |
| 2161 | ROMAN NUMERAL TWO |
| 2162 | ROMAN NUMERAL THREE |
| 2163 | ROMAN NUMERAL FOUR |
| 2164 | ROMAN NUMERAL FIVE |
| 2165 | ROMAN NUMERAL SIX |
| 2166 | ROMAN NUMERAL SEVEN |
| 2167 | ROMAN NUMERAL EIGHT |
| 2168 | ROMAN NUMERAL NINE |
| 2169 | ROMAN NUMERAL TEN |
| 216A | ROMAN NUMERAL ELEVEN |
| 216B | ROMAN NUMERAL TWELVE |
| 2170 | SMALL ROMAN NUMERAL ONE |
| 2171 | SMALL ROMAN NUMERAL TWO |
| 2172 | SMALL ROMAN NUMERAL THREE |
| 2173 | SMALL ROMAN NUMERAL FOUR |
| 2174 | SMALL ROMAN NUMERAL FIVE |
| 2175 | SMALL ROMAN NUMERAL SIX |
| 2176 | SMALL ROMAN NUMERAL SEVEN |
| 2177 | SMALL ROMAN NUMERAL EIGHT |
| 2178 | SMALL ROMAN NUMERAL NINE |
| 2179 | SMALL ROMAN NUMERAL TEN |
| 2190 | LEFTWARDS ARROW |
| 2191 | UPWARDS ARROW |
| 2192 | RIGHTWARDS ARROW |
| 2193 | DOWNWARDS ARROW |
| 2196 | NORTH WEST ARROW |
| 2197 | NORTH EAST ARROW |
| 2198 | SOUTH EAST ARROW |
| 2199 | SOUTH WEST ARROW |
| 2208 | ELEMENT OF |
| 220 F | N-ARY PRODUCT |
| 2211 | N-ARY SUMMATION |
| 2215 | DIVISION SLASH |
| 221A | SQUARE ROOT |
| 221D | PROPORTIONAL TO |
| 221 E | INFINITY |
| 221F | RIGHT ANGLE |
| 2220 | ANGLE |
| 2223 | DIVIDES |
| 2225 | PARALLEL TO |
| 2227 | LOGICAL AND |
| 2228 | LOGICAL OR |
| 2229 | INTERSECTION |
| 222A | UNION |
| 222B | INTEGRAL |
| 222E | CONTOUR INTEGRAL |
| 2234 | THEREFORE |
| 2235 | BECAUSE |
| 2236 | RATIO |
| 2237 | PROPORTION |
| 223D | REVERSED TILDE (LAZY S) |
| 2248 | ALMOST EQUAL TO |


| 224C | ALL EQUAL TO |
| :---: | :---: |
| 2252 | APPROXIMATELY EQUAL TO OR THE IMAGE OF |
| 2260 | NOT EQUAL TO |
| 2261 | IDENTICAL TO |
| 2264 | LESS-THAN OR EQUAL TO |
| 2265 | GREATER-THAN OR EQUAL TO |
| 2266 | LESS-THAN OVER EQUAL TO |
| 2267 | GREATER-THAN OVER EQUAL TO |
| 226E | NOT LESS-THAN |
| 226F | NOT GREATER-THAN |
| 2295 | CIRCLED PLUS |
| 2299 | CIRCLED DOT OPERATOR |
| 22A5 | UP TACK |
| 22BF | RIGHT TRIANGLE |
| 2312 | ARC |
| 2460 | CIRCLED DIGIT ONE |
| 2461 | CIRCLED DIGIT TWO |
| 2462 | CIRCLED DIGIT THREE |
| 2463 | CIRCLED DIGIT FOUR |
| 2464 | CIRCLED DIGIT FIVE |
| 2465 | CIRCLED DIGIT SIX |
| 2466 | CIRCLED DIGIT SEVEN |
| 2467 | CIRCLED DIGIT EIGHT |
| 2468 | CIRCLED DIGIT NINE |
| 2469 | CIRCLED NUMBER TEN |
| 2474 | PARENTHESIZED DIGIT ONE |
| 2475 | PARENTHESIZED DIGIT TWO |
| 2476 | PARENTHESIZED DIGIT THREE |
| 2477 | PARENTHESIZED DIGIT FOUR |
| 2478 | PARENTHESIZED DIGIT FIVE |
| 2479 | PARENTHESIZED DIGIT SIX |
| 247A | PARENTHESIZED DIGIT SEVEN |
| 247B | PARENTHESIZED DIGIT EIGHT |
| 247C | PARENTHESIZED DIGIT NINE |
| 247D | PARENTHESIZED NUMBER TEN |
| 247E | PARENTHESIZED NUMBER ELEVEN |
| 247 F | PARENTHESIZED NUMBER TWELVE |
| 2480 | PARENTHESIZED NUMBER THIRTEEN |
| 2481 | PARENTHESIZED NUMBER FOURTEEN |
| 2482 | PARENTHESIZED NUMBER FIFTEEN |
| 2483 | PARENTHESIZED NUMBER SIXTEEN |
| 2484 | PARENTHESIZED NUMBER SEVENTEEN |
| 2485 | PARENTHESIZED NUMBER EIGHTEEN |
| 2486 | PARENTHESIZED NUMBER NINETEEN |
| 2487 | PARENTHESIZED NUMBER TWENTY |
| 2488 | DIGIT ONE FULL STOP |
| 2489 | DIGIT TWO FULL STOP |
| 248A | DIGIT THREE FULL STOP |
| 248B | DIGIT FOUR FULL STOP |
| 248C | DIGIT FIVE FULL STOP |
| 248D | DIGIT SIX FULL STOP |
| 248E | DIGIT SEVEN FULL STOP |
| 248 F | DIGIT EIGHT FULL STOP |
| 2490 | DIGIT NINE FULL STOP |
| 2491 | NUMBER TEN FULL STOP |
| 2492 | NUMBER ELEVEN FULL STOP |
| 2493 | NUMBER TWELVE FULL STOP |
| 2494 | NUMBER THIRTEEN FULL STOP |
| 2495 | NUMBER FOURTEEN FULL STOP |
| 2496 | NUMBER FIFTEEN FULL STOP |
| 2497 | NUMBER SIXTEEN FULL STOP |
| 2498 | NUMBER SEVENTEEN FULL STOP |
| 2499 | NUMBER EIGHTEEN FULL STOP |
| 249A | NUMBER NINETEEN FULL STOP |
| 249B | NUMBER TWENTY FULL STOP |
| 2500 | BOX DRAWINGS LIGHT HORIZONTAL |
| 2501 | BOX DRAWINGS HEAVY HORIZONTAL |
| 2502 | BOX DRAWINGS LIGHT VERTICAL |
| 2503 | BOX DRAWINGS HEAVY VERTICAL |
| 2504 | BOX DRAWINGS LIGHT TRIPLE DASH HORIZONTAL |
| 2505 | BOX DRAWINGS HEAVY TRIPLE DASH HORIZONTAL |
| 2506 | BOX DRAWINGS LIGHT TRIPLE DASH VERTICAL |
| 2507 | BOX DRAWINGS HEAVY TRIPLE DASH VERTICAL |
| 2508 | BOX DRAWINGS LIGHT QUADRUPLE DASH HORIZONTAL |
| 2509 | BOX DRAWINGS HEAVY QUADRUPLE DASH HORIZONTAL |
| 250A | BOX DRAWINGS LIGHT QUADRUPLE DASH VERTICAL |
| 250B | BOX DRAWINGS HEAVY QUADRUPLE DASH VERTICAL |
| 250C | BOX DRAWINGS LIGHT DOWN AND RIGHT |
| 250D | BOX DRAWINGS DOWN LIGHT AND RIGHT HEAVY |
| 250E | BOX DRAWINGS DOWN HEAVY AND RIGHT LIGHT |
| 250F | BOX DRAWINGS HEAVY DOWN AND RIGHT |


| 2510 | BOX DRAWINGS LIGHT DOWN AND LEFT |
| :---: | :---: |
| 2511 | BOX DRAWINGS DOWN LIGHT AND LEFT HEAVY |
| 2512 | BOX DRAWINGS DOWN HEAVY AND LEFT LIGHT |
| 2513 | BOX DRAWINGS HEAVY DOWN AND LEFT |
| 2514 | BOX DRAWINGS LIGHT UP AND RIGHT |
| 2515 | BOX DRAWINGS UP LIGHT AND RIGHT HEAVY |
| 2516 | BOX DRAWINGS UP HEAVY AND RIGHT LIGHT |
| 2517 | BOX DRAWINGS HEAVY UP AND RIGHT |
| 2518 | BOX DRAWINGS LIGHT UP AND LEFT |
| 2519 | BOX DRAWINGS UP LIGHT AND LEFT HEAVY |
| 251A | BOX DRAWINGS UP HEAVY AND LEFT LIGHT |
| 251B | BOX DRAWINGS HEAVY UP AND LEFT |
| 251C | BOX DRAWINGS LIGHT VERTICAL AND RIGHT |
| 251D | BOX DRAWINGS VERTICAL LIGHT AND RIGHT HEAVY |
| 251E | BOX DRAWINGS UP HEAVY AND RIGHT DOWN LIGHT |
| 251F | BOX DRAWINGS DOWN HEAVY AND RIGHT UP LIGHT |
| 2520 | BOX DRAWINGS VERTICAL HEAVY AND RIGHT LIGHT |
| 2521 | BOX DRAWINGS DOWN LIGHT AND RIGHT UP HEAVY |
| 2522 | BOX DRAWINGS UP LIGHT AND RIGHT DOWN HEAVY |
| 2523 | BOX DRAWINGS HEAVY VERTICAL AND RIGHT |
| 2524 | BOX DRAWINGS LIGHT VERTICAL AND LEFT |
| 2525 | BOX DRAWINGS VERTICAL LIGHT AND LEFT HEAVY |
| 2526 | BOX DRAWINGS UP HEAVY AND LEFT DOWN LIGHT |
| 2527 | BOX DRAWINGS DOWN HEAVY AND LEFT UP LIGHT |
| 2528 | BOX DRAWINGS VERTICAL HEAVY AND LEFT LIGHT |
| 2529 | BOX DRAWINGS DOWN LIGHT AND LEFT UP HEAVY |
| 252A | BOX DRAWINGS UP LIGHT AND LEFT DOWN HEAVY |
| 252B | BOX DRAWINGS HEAVY VERTICAL AND LEFT |
| 252C | BOX DRAWINGS LIGHT DOWN AND HORIZONTAL |
| 252D | BOX DRAWINGS LEFT HEAVY AND RIGHT DOWN LIGHT |
| 252E | BOX DRAWINGS RIGHT HEAVY AND LEFT DOWN LIGHT |
| 252F | BOX DRAWINGS DOWN LIGHT AND HORIZONTAL HEAVY |
| 2530 | BOX DRAWINGS DOWN HEAVY AND HORIZONTAL LIGHT |
| 2531 | BOX DRAWINGS RIGHT LIGHT AND LEFT DOWN HEAVY |
| 2532 | BOX DRAWINGS LEFT LIGHT AND RIGHT DOWN HEAVY |
| 2533 | BOX DRAWINGS HEAVY DOWN AND HORIZONTAL |
| 2534 | BOX DRAWINGS LIGHT UP AND HORIZONTAL |
| 2535 | BOX DRAWINGS LEFT HEAVY AND RIGHT UP LIGHT |
| 2536 | BOX DRAWINGS RIGHT HEAVY AND LEFT UP LIGHT |
| 2537 | BOX DRAWINGS UP LIGHT AND HORIZONTAL HEAVY |
| 2538 | BOX DRAWINGS UP HEAVY AND HORIZONTAL LIGHT |
| 2539 | BOX DRAWINGS RIGHT LIGHT AND LEFT UP HEAVY |
| 253A | BOX DRAWINGS LEFT LIGHT AND RIGHT UP HEAVY |
| 253B | BOX DRAWINGS HEAVY UP AND HORIZONTAL |
| 253C | BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL |
| 253D | BOX DRAWINGS LEFT HEAVY AND RIGHT VERTICAL LIGHT |
| 253E | BOX DRAWINGS RIGHT HEAVY AND LEFT VERTICAL LIGHT |
| 253F | BOX DRAWINGS VERTICAL LIGHT AND HORIZONTAL HEAVY |
| 2540 | BOX DRAWINGS UP HEAVY AND DOWN HORIZONTAL LIGHT |
| 2541 | BOX DRAWINGS DOWN HEAVY AND UP HORIZONTAL LIGHT |
| 2542 | BOX DRAWINGS VERTICAL HEAVY AND HORIZONTAL LIGHT |
| 2543 | BOX DRAWINGS LEFT UP HEAVY AND RIGHT DOWN LIGHT |
| 2544 | BOX DRAWINGS RIGHT UP HEAVY AND LEFT DOWN LIGHT |
| 2545 | BOX DRAWINGS LEFT DOWN HEAVY AND RIGHT UP LIGHT |


| 2546 | BOX DRAWINGS RIGHT DOWN HEAVY AND LEFT UP LIGHT |
| :---: | :---: |
| 2547 | BOX DRAWINGS DOWN LIGHT AND UP HORIZONTAL HEAVY |
| 2548 | BOX DRAWINGS UP LIGHT AND DOWN HORIZONTAL HEAVY |
| 2549 | BOX DRAWINGS RIGHT LIGHT AND LEFT VERTICAL HEAVY |
| 254A | BOX DRAWINGS LEFT LIGHT AND RIGHT VERTICAL HEAVY |
| 254B | BOX DRAWINGS HEAVY VERTICAL AND HORIZONTAL |
| 2550 | BOX DRAWINGS DOUBLE HORIZONTAL |
| 2551 | BOX DRAWINGS DOUBLE VERTICAL |
| 2552 | BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE |
| 2553 | BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE |
| 2554 | BOX DRAWINGS DOUBLE DOWN AND RIGHT |
| 2555 | BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE |
| 2556 | BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE |
| 2557 | BOX DRAWINGS DOUBLE DOWN AND LEFT |
| 2558 | BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE |
| 2559 | BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE |
| 255A | BOX DRAWINGS DOUBLE UP AND RIGHT |
| 255B | BOX DRAWINGS UP SINGLE AND LEFT DOUBLE |
| 255C | BOX DRAWINGS UP DOUBLE AND LEFT SINGLE |
| 255D | BOX DRAWINGS DOUBLE UP AND LEFT |
| 255E | BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE |
| 255F | BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE |
| 2560 | BOX DRAWINGS DOUBLE VERTICAL AND RIGHT |
| 2561 | BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE |
| 2562 | BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE |
| 2563 | BOX DRAWINGS DOUBLE VERTICAL AND LEFT |
| 2564 | BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE |
| 2565 | BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE |
| 2566 | BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL |
| 2567 | BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE |
| 2568 | BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE |
| 2569 | BOX DRAWINGS DOUBLE UP AND HORIZONTAL |
| 256A | BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE |
| 256B | BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE |
| 256C | BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL |
| 256D | BOX DRAWINGS LIGHT ARC DOWN AND RIGHT |
| 256E | BOX DRAWINGS LIGHT ARC DOWN AND LEFT |
| 256F | BOX DRAWINGS LIGHT ARC UP AND LEFT |
| 2570 | BOX DRAWINGS LIGHT ARC UP AND RIGHT |
| 2571 | BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT |
| 2572 | BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT |
| 2573 | BOX DRAWINGS LIGHT DIAGONAL CROSS |
| 2581 | LOWER ONE EIGHTH BLOCK |
| 2582 | LOWER ONE QUARTER BLOCK |
| 2583 | LOWER THREE EIGHTHS BLOCK |
| 2584 | LOWER HALF BLOCK |
| 2585 | LOWER FIVE EIGHTHS BLOCK |
| 2586 | LOWER THREE QUARTERS BLOCK |
| 2587 | LOWER SEVEN EIGHTHS BLOCK |
| 2588 | FULL BLOCK |
| 2589 | LEFT SEVEN EIGHTHS BLOCK |
| 258A | LEFT THREE QUARTERS BLOCK |
| 258B | LEFT FIVE EIGHTHS BLOCK |
| 258C | LEFT HALF BLOCK |
| 258D | LEFT THREE EIGHTHS BLOCK |
| 258E | LEFT ONE QUARTER BLOCK |
| 258F | LEFT ONE EIGHTH BLOCK |
| 2593 | DARK SHADE |
| 2594 | UPPER ONE EIGHTH BLOCK |
| 2595 | RIGHT ONE EIGHTH BLOCK |
| 25A0 | BLACK SQUARE |
| 25A1 | WHITE SQUARE |
| 25B2 | BLACK UP-POINTING TRIANGLE |
| 25B3 | WHITE UP-POINTING TRIANGLE |
| 25BC | BLACK DOWN-POINTING TRIANGLE |


| 25BD | WHITE DOWN-POINTING TRIANGLE |
| :---: | :---: |
| 25C6 | BLACK DIAMOND |
| 25C7 | WHITE DIAMOND |
| 25CB | WHITE CIRCLE |
| 25CE | BULLSEYE |
| 25CF | BLACK CIRCLE |
| 25E2 | BLACK LOWER RIGHT TRIANGLE |
| 25E3 | BLACK LOWER LEFT TRIANGLE |
| 25E4 | BLACK UPPER LEFT TRIANGLE |
| 25E5 | BLACK UPPER RIGHT TRIANGLE |
| 2605 | BLACK STAR |
| 2606 | WHITE STAR |
| 2609 | SUN |
| 2640 | FEMALE SIGN |
| 2642 | MALE SIGN |
| 2FF0 | IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO RIGHT |
| 2FF1 | IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO BELOW |
| 2FF2 | IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO MIDDLE AND RIGHT |
| 2FF3 | IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO MIDDLE AND BELOW |
| 2FF4 | IDEOGRAPHIC DESCRIPTION CHARACTER FULL SURROUND |
| 2FF5 | IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM ABOVE |
| 2FF6 | IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM BELOW |
| 2FF7 | IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM LEFT |
| 2FF8 | IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM UPPER LEFT |
| 2FF9 | IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM UPPER RIGHT |
| 2FFA | IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM LOWER LEFT |
| 2FFB | IDEOGRAPHIC DESCRIPTION CHARACTER OVERLAID |
| 3000 | IDEOGRAPHIC SPACE |
| 3001 | IDEOGRAPHIC COMMA |
| 3002 | IDEOGRAPHIC FULL STOP |
| 3003 | DITTO MARK |
| 3005 | IDEOGRAPHIC ITERATION MARK |
| 3006 | IDEOGRAPHIC CLOSING MARK |
| 3007 | IDEOGRAPHIC NUMBER ZERO |
| 3008 | LEFT ANGLE BRACKET |
| 3009 | RIGHT ANGLE BRACKET |
| 300A | LEFT DOUBLE ANGLE BRACKET |
| 300B | RIGHT DOUBLE ANGLE BRACKET |
| 300 C | LEFT CORNER BRACKET |
| 300D | RIGHT CORNER BRACKET |
| 300E | LEFT WHITE CORNER BRACKET |
| 300F | RIGHT WHITE CORNER BRACKET |
| 3010 | LEFT BLACK LENTICULAR BRACKET |
| 3011 | RIGHT BLACK LENTICULAR BRACKET |
| 3012 | POSTAL MARK |
| 3013 | GETA MARK |
| 3014 | LEFT TORTOISE SHELL BRACKET |
| 3015 | RIGHT TORTOISE SHELL BRACKET |
| 3016 | LEFT WHITE LENTICULAR BRACKET |
| 3017 | RIGHT WHITE LENTICULAR BRACKET |
| 301D | REVERSED DOUBLE PRIME QUOTATION MARK |
| 301E | DOUBLE PRIME QUOTATION MARK |
| 3021 | HANGZHOU NUMERAL ONE |
| 3022 | HANGZHOU NUMERAL TWO |
| 3023 | HANGZHOU NUMERAL THREE |
| 3024 | HANGZHOU NUMERAL FOUR |
| 3025 | HANGZHOU NUMERAL FIVE |
| 3026 | HANGZHOU NUMERAL SIX |
| 3027 | HANGZHOU NUMERAL SEVEN |
| 3028 | HANGZHOU NUMERAL EIGHT |
| 3029 | HANGZHOU NUMERAL NINE |
| 303E | IDEOGRAPHIC VARIATION INDICATOR |
| 3041 | HIRAGANA LETTER SMALL A |
| 3042 | HIRAGANA LETTER A |
| 3043 | HIRAGANA LETTER SMALL I |
| 3044 | HIRAGANA LETTER I |
| 3045 | HIRAGANA LETTER SMALL U |
| 3046 | HIRAGANA LETTER U |
| 3047 | HIRAGANA LETTER SMALL E |
| 3048 | HIRAGANA LETTER E |
| 3049 | HIRAGANA LETTER SMALL O |
| 304A | HIRAGANA LETTER O |
| 304B | HIRAGANA LETTER KA |
| 304C | HIRAGANA LETTER GA |
| 304D | HIRAGANA LETTER KI |
| 304E | HIRAGANA LETTER GI |


| 304F | HIRAGANA LETTER KU |
| :---: | :---: |
| 3050 | HIRAGANA LETTER GU |
| 3051 | HIRAGANA LETTER KE |
| 3052 | HIRAGANA LETTER GE |
| 3053 | HIRAGANA LETTER KO |
| 3054 | HIRAGANA LETTER GO |
| 3055 | HIRAGANA LETTER SA |
| 3056 | HIRAGANA LETTER ZA |
| 3057 | HIRAGANA LETTER SI |
| 3058 | HIRAGANA LETTER ZI |
| 3059 | HIRAGANA LETTER SU |
| 305A | HIRAGANA LETTER ZU |
| 305B | HIRAGANA LETTER SE |
| 305C | HIRAGANA LETTER ZE |
| 305D | HIRAGANA LETTER SO |
| 305E | HIRAGANA LETTER ZO |
| 305F | HIRAGANA LETTER TA |
| 3060 | HIRAGANA LETTER DA |
| 3061 | HIRAGANA LETTER TI |
| 3062 | HIRAGANA LETTER DI |
| 3063 | HIRAGANA LETTER SMALL TU |
| 3064 | HIRAGANA LETTER TU |
| 3065 | HIRAGANA LETTER DU |
| 3066 | HIRAGANA LETTER TE |
| 3067 | HIRAGANA LETTER DE |
| 3068 | HIRAGANA LETTER TO |
| 3069 | HIRAGANA LETTER DO |
| 306A | HIRAGANA LETTER NA |
| 306B | HIRAGANA LETTER NI |
| 306C | HIRAGANA LETTER NU |
| 306D | HIRAGANA LETTER NE |
| 306E | HIRAGANA LETTER NO |
| 306F | HIRAGANA LETTER HA |
| 3070 | HIRAGANA LETTER BA |
| 3071 | HIRAGANA LETTER PA |
| 3072 | HIRAGANA LETTER HI |
| 3073 | HIRAGANA LETTER BI |
| 3074 | HIRAGANA LETTER PI |
| 3075 | HIRAGANA LETTER HU |
| 3076 | HIRAGANA LETTER BU |
| 3077 | HIRAGANA LETTER PU |
| 3078 | HIRAGANA LETTER HE |
| 3079 | HIRAGANA LETTER BE |
| 307A | HIRAGANA LETTER PE |
| 307B | HIRAGANA LETTER HO |
| 307C | HIRAGANA LETTER BO |
| 307D | HIRAGANA LETTER PO |
| 307E | HIRAGANA LETTER MA |
| 307F | HIRAGANA LETTER MI |
| 3080 | HIRAGANA LETTER MU |
| 3081 | HIRAGANA LETTER ME |
| 3082 | HIRAGANA LETTER MO |
| 3083 | HIRAGANA LETTER SMALL YA |
| 3084 | HIRAGANA LETTER YA |
| 3085 | HIRAGANA LETTER SMALL YU |
| 3086 | HIRAGANA LETTER YU |
| 3087 | HIRAGANA LETTER SMALL YO |
| 3088 | HIRAGANA LETTER YO |
| 3089 | HIRAGANA LETTER RA |
| 308A | HIRAGANA LETTER RI |
| 308B | HIRAGANA LETTER RU |
| 308C | HIRAGANA LETTER RE |
| 308D | HIRAGANA LETTER RO |
| 308E | HIRAGANA LETTER SMALL WA |
| 308F | HIRAGANA LETTER WA |
| 3090 | HIRAGANA LETTER WI |
| 3091 | HIRAGANA LETTER WE |
| 3092 | HIRAGANA LETTER WO |
| 3093 | HIRAGANA LETTER N |
| 309B | KATAKANA-HIRAGANA VOICED SOUND MARK |
| 309C | KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK |
| 309D | HIRAGANA ITERATION MARK |
| 309E | HIRAGANA VOICED ITERATION MARK |
| 30A1 | KATAKANA LETTER SMALL A |
| 30A2 | KATAKANA LETTER A |
| 30A3 | KATAKANA LETTER SMALL I |
| 30A4 | KATAKANA LETTER I |
| 30A5 | KATAKANA LETTER SMALL U |
| 30A6 | KATAKANA LETTER U |
| 30A7 | KATAKANA LETTER SMALL E |
| 30A8 | KATAKANA LETTER E |
| 30A9 | KATAKANA LETTER SMALL O |
| 30AA | KATAKANA LETTER O |
| 30AB | KATAKANA LETTER KA |
| 30AC | KATAKANA LETTER GA |
| 30AD | KATAKANA LETTER KI |


| 30AE | KATAKANA LETTER GI |
| :---: | :---: |
| 30AF | KATAKANA LETTER KU |
| 30B0 | KATAKANA LETTER GU |
| 30B1 | KATAKANA LETTER KE |
| 30B2 | KATAKANA LETTER GE |
| 30B3 | KATAKANA LETTER KO |
| 30B4 | KATAKANA LETTER GO |
| 30B5 | KATAKANA LETTER SA |
| 30B6 | KATAKANA LETTER ZA |
| 30B7 | KATAKANA LETTER SI |
| 30B8 | KATAKANA LETTER ZI |
| 30B9 | KATAKANA LETTER SU |
| 30BA | KATAKANA LETTER ZU |
| 30BB | KATAKANA LETTER SE |
| 30BC | KATAKANA LETTER ZE |
| 30BD | KATAKANA LETTER SO |
| 30BE | KATAKANA LETTER ZO |
| 30BF | KATAKANA LETTER TA |
| 30C0 | KATAKANA LETTER DA |
| 30C1 | KATAKANA LETTER TI |
| 30C2 | KATAKANA LETTER DI |
| 30C3 | KATAKANA LETTER SMALL TU |
| 30C4 | KATAKANA LETTER TU |
| 30C5 | KATAKANA LETTER DU |
| 30C6 | KATAKANA LETTER TE |
| 30 C 7 | KATAKANA LETTER DE |
| 30C8 | KATAKANA LETTER TO |
| 30C9 | KATAKANA LETTER DO |
| 30CA | KATAKANA LETTER NA |
| 30CB | KATAKANA LETTER NI |
| 30CC | KATAKANA LETTER NU |
| 30CD | KATAKANA LETTER NE |
| 30CE | KATAKANA LETTER NO |
| 30CF | KATAKANA LETTER HA |
| 30D0 | KATAKANA LETTER BA |
| 30D1 | KATAKANA LETTER PA |
| 30D2 | KATAKANA LETTER HI |
| 30D3 | KATAKANA LETTER BI |
| 30D4 | KATAKANA LETTER PI |
| 30D5 | KATAKANA LETTER HU |
| 30D6 | KATAKANA LETTER BU |
| 30D7 | KATAKANA LETTER PU |
| 30D8 | KATAKANA LETTER HE |
| 30D9 | KATAKANA LETTER BE |
| 30DA | KATAKANA LETTER PE |
| 30DB | KATAKANA LETTER HO |
| 30DC | KATAKANA LETTER BO |
| 30DD | KATAKANA LETTER PO |
| 30DE | KATAKANA LETTER MA |
| 30DF | KATAKANA LETTER MI |
| 30E0 | KATAKANA LETTER MU |
| 30E1 | KATAKANA LETTER ME |
| 30E2 | KATAKANA LETTER MO |
| 30E3 | KATAKANA LETTER SMALL YA |
| 30E4 | KATAKANA LETTER YA |
| 30E5 | KATAKANA LETTER SMALL YU |
| 30E6 | KATAKANA LETTER YU |
| 30E7 | KATAKANA LETTER SMALL YO |
| 30E8 | KATAKANA LETTER YO |
| 30E9 | KATAKANA LETTER RA |
| 30EA | KATAKANA LETTER RI |
| 30EB | KATAKANA LETTER RU |
| 30EC | KATAKANA LETTER RE |
| 30ED | KATAKANA LETTER RO |
| 30EE | KATAKANA LETTER SMALL WA |
| 30EF | KATAKANA LETTER WA |
| 30F0 | KATAKANA LETTER WI |
| 30F1 | KATAKANA LETTER WE |
| 30F2 | KATAKANA LETTER WO |
| 30F3 | KATAKANA LETTER N |
| 30F4 | KATAKANA LETTER VU |
| 30F5 | KATAKANA LETTER SMALL KA |
| 30F6 | KATAKANA LETTER SMALL KE |
| 30FC | KATAKANA-HIRAGANA PROLONGED SOUND MARK |
| 30FD | KATAKANA ITERATION MARK |
| 30FE | KATAKANA VOICED ITERATION MARK |
| 3105 | BOPOMOFO LETTER B |
| 3106 | BOPOMOFO LETTER P |
| 3107 | BOPOMOFO LETTER M |
| 3108 | BOPOMOFO LETTER F |
| 3109 | BOPOMOFO LETTER D |
| 310A | BOPOMOFO LETTER T |
| 310B | BOPOMOFO LETTER N |
| 310 C | BOPOMOFO LETTER L |
| 310D | BOPOMOFO LETTER G |
| 310 E | BOPOMOFO LETTER K |


| 310F | BOPOMOFO LETTER H |
| :---: | :---: |
| 3110 | BOPOMOFO LETTER J |
| 3111 | BOPOMOFO LETTER Q |
| 3112 | BOPOMOFO LETTER X |
| 3113 | BOPOMOFO LETTER ZH |
| 3114 | BOPOMOFO LETTER CH |
| 3115 | BOPOMOFO LETTER SH |
| 3116 | BOPOMOFO LETTER R |
| 3117 | BOPOMOFO LETTER Z |
| 3118 | BOPOMOFO LETTER C |
| 3119 | BOPOMOFO LETTER S |
| 311A | BOPOMOFO LETTER A |
| 311B | BOPOMOFO LETTER O |
| 311C | BOPOMOFO LETTER E |
| 311D | BOPOMOFO LETTER EH |
| 311E | BOPOMOFO LETTER AI |
| 311F | BOPOMOFO LETTER EI |
| 3120 | BOPOMOFO LETTER AU |
| 3121 | BOPOMOFO LETTER OU |
| 3122 | BOPOMOFO LETTER AN |
| 3123 | BOPOMOFO LETTER EN |
| 3124 | BOPOMOFO LETTER ANG |
| 3125 | BOPOMOFO LETTER ENG |
| 3126 | BOPOMOFO LETTER ER |
| 3127 | BOPOMOFO LETTER I |
| 3128 | BOPOMOFO LETTER U |
| 3129 | BOPOMOFO LETTER IU |
| 3220 | PARENTHESIZED IDEOGRAPH ONE |
| 3221 | PARENTHESIZED IDEOGRAPH TWO |
| 3222 | PARENTHESIZED IDEOGRAPH THREE |
| 3223 | PARENTHESIZED IDEOGRAPH FOUR |
| 3224 | PARENTHESIZED IDEOGRAPH FIVE |
| 3225 | PARENTHESIZED IDEOGRAPH SIX |
| 3226 | PARENTHESIZED IDEOGRAPH SEVEN |
| 3227 | PARENTHESIZED IDEOGRAPH EIGHT |
| 3228 | PARENTHESIZED IDEOGRAPH NINE |
| 3229 | PARENTHESIZED IDEOGRAPH TEN |
| 3231 | PARENTHESIZED IDEOGRAPH STOCK |
| 32A3 | CIRCLED IDEOGRAPH CORRECT |
| 338E | SQUARE MG |
| 338 F | SQUARE KG |
| 339C | SQUARE MM |
| 339D | SQUARE CM |
| 339E | SQUARE KM |
| 33A1 | SQUARE M SQUARED |
| 33C4 | SQUARE CC |
| 33CE | SQUARE KM CAPITAL |
| 33D1 | SQUARE LN |
| 33D2 | SQUARE LOG |
| 33D5 | SQUARE MIL |
| 3400-4DB5 | CJK UNIFIED IDEOGRAPH EXTENSION A |
| 4E00-9FA5 | CJK UNIFIED IDEOGRAPH |
| E78D-E796 | PRIVATE USE AREA |
| E7C7-E7C8 | PRIVATE USE AREA |
| E815-E864 | PRIVATE USE AREA |
| F92C | CJK COMPATIBILITY IDEOGRAPH-F92C |
| F979 | CJK COMPATIBILITY IDEOGRAPH-F979 |
| F995 | CJK COMPATIBILITY IDEOGRAPH-F995 |
| F9E7 | CJK COMPATIBILITY IDEOGRAPH-F9E7 |
| F9F1 | CJK COMPATIBILITY IDEOGRAPH-F9F1 |
| FAOC | CJK COMPATIBILITY IDEOGRAPH-FAOC |
| FAOD | CJK COMPATIBILITY IDEOGRAPH-FAOD |
| FAOE | CJK COMPATIBILITY IDEOGRAPH-FA0E |
| FAOF | CJK COMPATIBILITY IDEOGRAPH-FAOF |
| FA11 | CJK COMPATIBILITY IDEOGRAPH-FA11 |
| FA13 | CJK COMPATIBILITY IDEOGRAPH-FA13 |
| FA14 | CJK COMPATIBILITY IDEOGRAPH-FA14 |
| FA18 | CJK COMPATIBILITY IDEOGRAPH-FA18 |
| FA1F | CJK COMPATIBILITY IDEOGRAPH-FA1F * |
| FA20 | CJK COMPATIBILITY IDEOGRAPH-FA20 |
| FA21 | CJK COMPATIBILITY IDEOGRAPH-FA21 |
| FA23 | CJK COMPATIBILITY IDEOGRAPH-FA23 * |
| FA24 | CJK COMPATIBILITY IDEOGRAPH-FA24 |
| FA27 | CJK COMPATIBILITY IDEOGRAPH-FA27 |
| FA28 | CJK COMPATIBILITY IDEOGRAPH-FA28 |
| FA29 | CJK COMPATIBILITY IDEOGRAPH-FA29 |
| FE30 | PRESENTATION FORM FOR VERTICAL TWO DOT LEADER |
| FE31 | PRESENTATION FORM FOR VERTICAL EM DASH |
| FE33 | PRESENTATION FORM FOR VERTICAL LOW LINE |
| FE34 | PRESENTATION FORM FOR VERTICAL WAVY LOW LINE |
| FE35 | PRESENTATION FORM FOR VERTICAL LEFT PARENTHESIS |
| FE36 | PRESENTATION FORM FOR VERTICAL RIGHT PARENTHESIS |


| FE37 | PRESENTATION FORM FOR VERTICAL LEFT CURLY BRACKET |
| :---: | :---: |
| FE38 | PRESENTATION FORM FOR VERTICAL RIGHT CURLY BRACKET |
| FE39 | PRESENTATION FORM FOR VERTICAL LEFT TORTOISE SHELL BRACKET |
| FE3A | PRESENTATION FORM FOR VERTICAL RIGHT TORTOISE SHELL BRACKET |
| FE3B | PRESENTATION FORM FOR VERTICAL LEFT BLACK LENTICULAR BRACKET |
| FE3C | PRESENTATION FORM FOR VERTICAL RIGHT BLACK LENTICULAR BRACKET |
| FE3D | PRESENTATION FORM FOR VERTICAL LEFT DOUBLE ANGLE BRACKET |
| FE3E | PRESENTATION FORM FOR VERTICAL RIGHT DOUBLE ANGLE BRACKET |
| FE3F | PRESENTATION FORM FOR VERTICAL LEFT ANGLE BRACKET |
| FE40 | PRESENTATION FORM FOR VERTICAL RIGHT ANGLE BRACKET |
| FE41 | PRESENTATION FORM FOR VERTICAL LEFT CORNER BRACKET |
| FE42 | PRESENTATION FORM FOR VERTICAL RIGHT CORNER BRACKET |
| FE43 | PRESENTATION FORM FOR VERTICAL LEFT WHITE CORNER BRACKET |
| FE44 | PRESENTATION FORM FOR VERTICAL RIGHT WHITE CORNER BRACKET |
| FE49 | DASHED OVERLINE |
| FE4A | CENTRELINE OVERLINE |
| FE4B | WAVY OVERLINE |
| FE4C | DOUBLE WAVY OVERLINE |
| FE4D | DASHED LOW LINE |
| FE4E | CENTRELINE LOW LINE |
| FE4F | WAVY LOW LINE |
| FE50 | SMALL COMMA |
| FE51 | SMALL IDEOGRAPHIC COMMA |
| FE52 | SMALL FULL STOP |
| FE54 | SMALL SEMICOLON |
| FE55 | SMALL COLON |
| FE56 | SMALL QUESTION MARK |
| FE57 | SMALL EXCLAMATION MARK |
| FE59 | SMALL LEFT PARENTHESIS |
| FE5A | SMALL RIGHT PARENTHESIS |
| FE5B | SMALL LEFT CURLY BRACKET |
| FE5C | SMALL RIGHT CURLY BRACKET |
| FE5D | SMALL LEFT TORTOISE SHELL BRACKET |
| FE5E | SMALL RIGHT TORTOISE SHELL BRACKET |
| FE5F | SMALL NUMBER SIGN |
| FE60 | SMALL AMPERSAND |
| FE61 | SMALL ASTERISK |
| FE62 | SMALL PLUS SIGN |
| FE63 | SMALL HYPHEN-MINUS |
| FE64 | SMALL LESS-THAN SIGN |
| FE65 | SMALL GREATER-THAN SIGN |
| FE66 | SMALL EQUALS SIGN |
| FE68 | SMALL REVERSE SOLIDUS |
| FE69 | SMALL DOLLAR SIGN |
| FE6A | SMALL PERCENT SIGN |
| FE6B | SMALL COMMERCIAL AT |
| FF01 | FULLWIDTH EXCLAMATION MARK |
| FF02 | FULLWIDTH QUOTATION MARK |
| FF03 | FULLWIDTH NUMBER SIGN |
| FF04 | FULLWIDTH DOLLAR SIGN |
| FF05 | FULLWIDTH PERCENT SIGN |
| FF06 | FULLWIDTH AMPERSAND |
| FF07 | FULLWIDTH APOSTROPHE |
| FF08 | FULLWIDTH LEFT PARENTHESIS |
| FF09 | FULLWIDTH RIGHT PARENTHESIS |
| FF0A | FULLWIDTH ASTERISK |
| FFOB | FULLWIDTH PLUS SIGN |
| FFOC | FULLWIDTH COMMA |
| FFOD | FULLWIDTH HYPHEN-MINUS |
| FF0E | FULLWIDTH FULL STOP |
| FFOF | FULLWIDTH SOLIDUS |
| FF10 | FULLWIDTH DIGIT ZERO |
| FF11 | FULLWIDTH DIGIT ONE |
| FF12 | FULLWIDTH DIGIT TWO |
| FF13 | FULLWIDTH DIGIT THREE |
| FF14 | FULLWIDTH DIGIT FOUR |
| FF15 | FULLWIDTH DIGIT FIVE |
| FF16 | FULLWIDTH DIGIT SIX |
| FF17 | FULLWIDTH DIGIT SEVEN |
| FF18 | FULLWIDTH DIGIT EIGHT |
| FF19 | FULLWIDTH DIGIT NINE |
| FF1A | FULLWIDTH COLON |
| FF1B | FULLWIDTH SEMICOLON |
| FF1C | FULLWIDTH LESS-THAN SIGN |


| FF1D | FULLWIDTH EQUALS SIGN |
| :---: | :---: |
| FF1E | FULLWIDTH GREATER-THAN SIGN |
| FF1F | FULLWIDTH QUESTION MARK |
| FF20 | FULLWIDTH COMMERCIAL AT |
| FF21 | FULLWIDTH LATIN CAPITAL LETTER A |
| FF22 | FULLWIDTH LATIN CAPITAL LETTER B |
| FF23 | FULLWIDTH LATIN CAPITAL LETTER C |
| FF24 | FULLWIDTH LATIN CAPITAL LETTER D |
| FF25 | FULLWIDTH LATIN CAPITAL LETTER E |
| FF26 | FULLWIDTH LATIN CAPITAL LETTER F |
| FF27 | FULLWIDTH LATIN CAPITAL LETTER G |
| FF28 | FULLWIDTH LATIN CAPITAL LETTER H |
| FF29 | FULLWIDTH LATIN CAPITAL LETTER I |
| FF2A | FULLWIDTH LATIN CAPITAL LETTER J |
| FF2B | FULLWIDTH LATIN CAPITAL LETTER K |
| FF2C | FULLWIDTH LATIN CAPITAL LETTER L |
| FF2D | FULLWIDTH LATIN CAPITAL LETTER M |
| FF2E | FULLWIDTH LATIN CAPITAL LETTER N |
| FF2F | FULLWIDTH LATIN CAPITAL LETTER O |
| FF30 | FULLWIDTH LATIN CAPITAL LETTER P |
| FF31 | FULLWIDTH LATIN CAPITAL LETTER Q |
| FF32 | FULLWIDTH LATIN CAPITAL LETTER R |
| FF33 | FULLWIDTH LATIN CAPITAL LETTER S |
| FF34 | FULLWIDTH LATIN CAPITAL LETTER T |
| FF35 | FULLWIDTH LATIN CAPITAL LETTER U |
| FF36 | FULLWIDTH LATIN CAPITAL LETTER V |
| FF37 | FULLWIDTH LATIN CAPITAL LETTER W |
| FF38 | FULLWIDTH LATIN CAPITAL LETTER X |
| FF39 | FULLWIDTH LATIN CAPITAL LETTER Y |
| FF3A | FULLWIDTH LATIN CAPITAL LETTER Z |
| FF3B | FULLWIDTH LEFT SQUARE BRACKET |
| FF3C | FULLWIDTH REVERSE SOLIDUS |
| FF3D | FULLWIDTH RIGHT SQUARE BRACKET |
| FF3E | FULLWIDTH CIRCUMFLEX ACCENT |
| FF3F | FULLWIDTH LOW LINE |
| FF40 | FULLWIDTH GRAVE ACCENT |
| FF41 | FULLWIDTH LATIN SMALL LETTER A |
| FF42 | FULLWIDTH LATIN SMALL LETTER B |
| FF43 | FULLWIDTH LATIN SMALL LETTER C |
| FF44 | FULLWIDTH LATIN SMALL LETTER D |
| FF45 | FULLWIDTH LATIN SMALL LETTER E |
| FF46 | FULLWIDTH LATIN SMALL LETTER F |
| FF47 | FULLWIDTH LATIN SMALL LETTER G |
| FF48 | FULLWIDTH LATIN SMALL LETTER H |
| FF49 | FULLWIDTH LATIN SMALL LETTER I |
| FF4A | FULLWIDTH LATIN SMALL LETTER J |
| FF4B | FULLWIDTH LATIN SMALL LETTER K |
| FF4C | FULLWIDTH LATIN SMALL LETTER L |
| FF4D | FULLWIDTH LATIN SMALL LETTER M |
| FF4E | FULLWIDTH LATIN SMALL LETTER N |
| FF4F | FULLWIDTH LATIN SMALL LETTER O |
| FF50 | FULLWIDTH LATIN SMALL LETTER P |
| FF51 | FULLWIDTH LATIN SMALL LETTER Q |
| FF52 | FULLWIDTH LATIN SMALL LETTER R |
| FF53 | FULLWIDTH LATIN SMALL LETTER S |
| FF54 | FULLWIDTH LATIN SMALL LETTER T |
| FF55 | FULLWIDTH LATIN SMALL LETTER U |
| FF56 | FULLWIDTH LATIN SMALL LETTER V |
| FF57 | FULLWIDTH LATIN SMALL LETTER W |
| FF58 | FULLWIDTH LATIN SMALL LETTER X |
| FF59 | FULLWIDTH LATIN SMALL LETTER Y |
| FF5A | FULLWIDTH LATIN SMALL LETTER Z |
| FF5B | FULLWIDTH LEFT CURLY BRACKET |
| FF5C | FULLWIDTH VERTICAL LINE |
| FF5D | FULLWIDTH RIGHT CURLY BRACKET |
| FF5E | FULLWIDTH TILDE |
| FFEO | FULLWIDTH CENT SIGN |
| FFE1 | FULLWIDTH POUND SIGN |
| FFE2 | FULLWIDTH NOT SIGN |
| FFE3 | FULLWIDTH MACRON * |
| FFE4 | FULLWIDTH BROKEN BAR |
| FFE5 | FULLWIDTH YEN SIGN |

# Appendix H Windows 1252 Latin 1 

## Windows 1252 Latin 1 to Unicode translation

| ASCII | Unicode | Character |
| :---: | :---: | :---: |
| 0x00 | 0x0000 | NULL |
| $0 \times 01$ | 0x0001 | START OF HEADING |
| 0x02 | 0x0002 | START OF TEXT |
| 0x03 | 0x0003 | END OF TEXT |
| 0x04 | 0x0004 | END OF TRANSMISSION |
| 0x05 | 0x0005 | ENQUIRY |
| 0x06 | 0x0006 | ACKNOWLEDGE |
| $0 \times 07$ | $0 \times 0007$ | BELL |
| 0x08 | 0x0008 | BACKSPACE |
| 0x09 | 0x0009 | HORIZONTAL TABULATION |
| 0x0A | 0x000A | LINE FEED |
| 0x0B | 0x000B | VERTICAL TABULATION |
| 0x0C | 0x000C | FORM FEED |
| 0x0D | 0x000D | CARRIAGE RETURN |
| 0x0E | 0x000E | SHIFT OUT |
| 0x0F | 0x000F | SHIFT IN |
| 0x10 | 0x0010 | DATA LINK ESCAPE |
| $0 \times 11$ | 0x0011 | DEVICE CONTROL ONE |
| 0x12 | 0x0012 | DEVICE CONTROL TWO |
| 0x13 | 0x0013 | DEVICE CONTROL THREE |
| 0x14 | $0 \times 0014$ | DEVICE CONTROL FOUR |
| 0x15 | 0x0015 | NEGATIVE ACKNOWLEDGE |
| 0x16 | 0x0016 | SYNCHRONOUS IDLE |
| 0x17 | $0 \times 0017$ | END OF TRANSMISSION BLOCK |
| 0x18 | 0x0018 | CANCEL |
| 0x19 | 0x0019 | END OF MEDIUM |
| 0x1A | 0x001A | SUBSTITUTE |
| 0x1B | 0x001B | ESCAPE |
| 0x1C | 0x001C | FILE SEPARATOR |
| 0x1D | 0x001D | GROUP SEPARATOR |
| 0x1E | 0x001E | RECORD SEPARATOR |
| 0x1F | 0x001F | UNIT SEPARATOR |
| 0x20 | 0x0020 | SPACE |
| 0x21 | 0x0021 | EXCLAMATION MARK |
| 0x22 | 0x0022 | QUOTATION MARK |
| 0x23 | 0x0023 | NUMBER SIGN |
| 0x24 | 0x0024 | DOLLAR SIGN |
| 0x25 | 0x0025 | PERCENT SIGN |
| 0x26 | 0x0026 | AMPERSAND |
| 0x27 | 0x0027 | APOSTROPHE |
| 0x28 | 0x0028 | LEFT PARENTHESIS |
| 0x29 | 0x0029 | RIGHT PARENTHESIS |
| 0x2A | 0x002A | ASTERISK |
| 0x2B | 0x002B | PLUS SIGN |
| 0x2C | 0x002C | COMMA |
| 0x2D | 0x002D | HYPHEN-MINUS |
| 0x2E | 0x002E | FULL STOP |
| 0x2F | 0x002F | SOLIDUS |
| 0x30 | 0x0030 | DIGIT ZERO |
| 0x31 | 0x0031 | DIGIT ONE |
| 0x32 | 0x0032 | DIGIT TWO |
| 0x33 | 0x0033 | DIGIT THREE |
| $0 \times 34$ | $0 \times 0034$ | DIGIT FOUR |
| 0x35 | 0x0035 | DIGIT FIVE |
| 0x36 | 0x0036 | DIGIT SIX |
| 0x37 | 0x0037 | DIGIT SEVEN |
| 0x38 | 0x0038 | DIGIT EIGHT |
| 0x39 | 0x0039 | DIGIT NINE |
| 0x3A | 0x003A | COLON |
| 0x3B | 0x003B | SEMICOLON |
| 0x3C | 0x003C | LESS-THAN SIGN |
| 0x3D | 0x003D | EQUALS SIGN |
| 0x3E | 0x003E | GREATER-THAN SIGN |
| 0x3F | 0x003F | QUESTION MARK |
| 0x40 | 0x0040 | COMMERCIAL AT |
| 0x41 | 0x0041 | LATIN CAPITAL LETTER A |
| 0x42 | 0x0042 | LATIN CAPITAL LETTER B |
| 0x43 | $0 \times 0043$ | LATIN CAPITAL LETTER C |
| 0x44 | 0x0044 | LATIN CAPITAL LETTER D |


| 0x45 | 0x0045 | LATIN CAPITAL LETTER E |
| :---: | :---: | :---: |
| 0x46 | 0x0046 | LATIN CAPITAL LETTER F |
| 0x47 | 0x0047 | LATIN CAPITAL LETTER G |
| 0x48 | 0x0048 | LATIN CAPITAL LETTER H |
| 0x49 | 0x0049 | LATIN CAPITAL LETTER I |
| 0x4A | 0x004A | LATIN CAPITAL LETTER J |
| 0x4B | 0x004B | LATIN CAPITAL LETTER K |
| 0x4C | 0x004C | LATIN CAPITAL LETTER L |
| 0x4D | 0x004D | LATIN CAPITAL LETTER M |
| 0x4E | 0x004E | LATIN CAPITAL LETTER N |
| 0x4F | 0x004F | LATIN CAPITAL LETTER O |
| 0x50 | 0x0050 | LATIN CAPITAL LETTER P |
| 0x51 | 0x0051 | LATIN CAPITAL LETTER Q |
| 0x52 | 0x0052 | LATIN CAPITAL LETTER R |
| 0x53 | 0x0053 | LATIN CAPITAL LETTER S |
| 0x54 | 0x0054 | LATIN CAPITAL LETTER T |
| 0x55 | 0x0055 | LATIN CAPITAL LETTER U |
| 0x56 | 0x0056 | LATIN CAPITAL LETTER V |
| 0x57 | 0x0057 | LATIN CAPITAL LETTER W |
| 0x58 | 0x0058 | LATIN CAPITAL LETTER X |
| 0x59 | 0x0059 | LATIN CAPITAL LETTER Y |
| 0x5A | 0x005A | LATIN CAPITAL LETTER Z |
| 0x5B | 0x005B | LEFT SQUARE BRACKET |
| 0x5C | 0x005C | REVERSE SOLIDUS |
| 0x5D | 0x005D | RIGHT SQUARE BRACKET |
| 0x5E | 0x005E | CIRCUMFLEX ACCENT |
| 0x5F | 0x005F | LOW LINE |
| 0x60 | 0x0060 | GRAVE ACCENT |
| $0 \times 61$ | 0x0061 | LATIN SMALL LETTER A |
| 0x62 | 0x0062 | LATIN SMALL LETTER B |
| $0 \times 63$ | 0x0063 | LATIN SMALL LETTER C |
| 0x64 | 0x0064 | LATIN SMALL LETTER D |
| 0x65 | 0x0065 | LATIN SMALL LETTER E |
| $0 \times 66$ | 0x0066 | LATIN SMALL LETTER F |
| 0x67 | 0x0067 | LATIN SMALL LETTER G |
| 0x68 | 0x0068 | LATIN SMALL LETTER H |
| 0x69 | 0x0069 | LATIN SMALL LETTER I |
| $0 \times 6 \mathrm{~A}$ | 0x006A | LATIN SMALL LETTER J |
| 0x6B | 0x006B | LATIN SMALL LETTER K |
| 0x6C | 0x006C | LATIN SMALL LETTER L |
| $0 \times 6 \mathrm{D}$ | 0x006D | LATIN SMALL LETTER M |
| $0 \times 6 \mathrm{E}$ | 0x006E | LATIN SMALL LETTER N |
| $0 \times 6 \mathrm{~F}$ | 0x006F | LATIN SMALL LETTER O |
| 0x70 | 0x0070 | LATIN SMALL LETTER P |
| 0x71 | 0x0071 | LATIN SMALL LETTER Q |
| 0x72 | 0x0072 | LATIN SMALL LETTER R |
| 0x73 | 0x0073 | LATIN SMALL LETTER S |
| 0x74 | 0x0074 | LATIN SMALL LETTER T |
| 0x75 | 0x0075 | LATIN SMALL LETTER U |
| 0x76 | 0x0076 | LATIN SMALL LETTER V |
| 0x77 | 0x0077 | LATIN SMALL LETTER W |
| 0x78 | 0x0078 | LATIN SMALL LETTER X |
| 0x79 | 0x0079 | LATIN SMALL LETTER Y |
| 0x7A | 0x007A | LATIN SMALL LETTER Z |
| 0x7B | 0x007B | LEFT CURLY BRACKET |
| 0x7C | 0x007C | VERTICAL LINE |
| 0x7D | 0x007D | RIGHT CURLY BRACKET |
| 0x7E | 0x007E | TILDE |
| 0x7F | 0x007F | DELETE |
| 0x80 | 0x20AC | EURO SIGN |
| $0 \times 81$ | 0x0000 |  |
| 0x82 | 0x201A | SINGLE LOW-9 QUOTATION MARK |
| $0 \times 83$ | 0x0192 | LATIN SMALL LETTER F WITH HOOK |
| 0x84 | 0x201E | DOUBLE LOW-9 QUOTATION MARK |
| 0x85 | 0x2026 | HORIZONTAL ELLIPSIS |
| 0x86 | 0x2020 | DAGGER |
| 0x87 | 0x2021 | DOUBLE DAGGER |
| 0x88 | 0x02C6 | MODIFIER LETTER CIRCUMFLEX ACCENT |
| 0x89 | 0x2030 | PER MILLE SIGN |
| $0 \times 8 \mathrm{~A}$ | 0x0160 | LATIN CAPITAL LETTER S WITH CARON |


| 0x8B | 0x2039 | SINGLE LEFT-POINTING ANGLE |
| :---: | :---: | :---: |
| 0x8C | 0x0152 | LATIN CAPITAL LIGATURE OE |
| 0x8D | 0x0000 |  |
| 0x8E | 0x017D | LATIN CAPITAL LETTER Z WITH CARON |
| 0x8F | 0x0000 |  |
| 0x90 | 0x0000 |  |
| 0x91 | 0x2018 | LEFT SINGLE QUOTATION MARK |
| 0x92 | 0x2019 | RIGHT SINGLE QUOTATION MARK |
| 0x93 | 0x201C | LEFT DOUBLE QUOTATION MARK |
| 0x94 | 0x201D | RIGHT DOUBLE QUOTATION MARK |
| 0x95 | 0x2022 | BULLET |
| 0x96 | 0x2013 | EN DASH |
| 0x97 | 0x2014 | EM DASH |
| 0x98 | 0x02DC | SMALL TILDE |
| 0x99 | 0x2122 | TRADE MARK SIGN |
| 0x9A | 0x0161 | LATIN SMALL LETTER S WITH CARON |
| 0x9B | 0x203A | SINGLE RIGHT-POINTING ANGLE QUOTATION MARK |
| 0x9C | 0x0153 | LATIN SMALL LIGATURE OE |
| 0x9D | 0x0000 |  |
| 0x9E | 0x017E | LATIN SMALL LETTER Z WITH CARON |
| 0x9F | 0x0178 | LATIN CAPITAL LETTER Y WITH DIAERESIS |
| 0xA0 | 0x00A0 | NO-BREAK SPACE |
| 0xA1 | 0x00A1 | INVERTED EXCLAMATION MARK |
| 0xA2 | 0x00A2 | CENT SIGN |
| 0xA3 | 0x00A3 | POUND SIGN |
| 0xA4 | 0x00A4 | CURRENCY SIGN |
| 0xA5 | 0x00A5 | YEN SIGN |
| 0xA6 | 0x00A6 | BROKEN BAR |
| 0xA7 | 0x00A7 | SECTION SIGN |
| 0xA8 | 0x00A8 | DIAERESIS |
| 0xA9 | 0x00A9 | COPYRIGHT SIGN |
| 0xAA | 0x00AA | FEMININE ORDINAL INDICATOR |
| 0xAB | 0x00AB | LEFT-POINTING DOUBLE ANGLE QUOTATION MARK |
| 0xAC | 0x00AC | NOT SIGN |
| OxAD | 0x00AD | SOFT HYPHEN |
| 0xAE | 0x00AE | REGISTERED SIGN |
| 0xAF | 0x00AF | MACRON |
| 0xB0 | 0x00B0 | DEGREE SIGN |
| 0xB1 | 0x00B1 | PLUS-MINUS SIGN |
| 0xB2 | 0x00B2 | SUPERSCRIPT TWO |
| 0xB3 | 0x00B3 | SUPERSCRIPT THREE |
| 0xB4 | 0x00B4 | ACUTE ACCENT |
| 0xB5 | 0x00B5 | MICRO SIGN |
| 0xB6 | 0x00B6 | PILCROW SIGN |
| 0xB7 | 0x00B7 | MIDDLE DOT |
| 0xB8 | 0x00B8 | CEDILLA |
| 0xB9 | 0x00B9 | SUPERSCRIPT ONE |
| 0xBA | 0x00BA | MASCULINE ORDINAL INDICATOR |
| 0xBB | 0x00BB | RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK |
| 0xBC | 0x00BC | VULGAR FRACTION ONE QUARTER |
| 0xBD | 0x00BD | VULGAR FRACTION ONE HALF |
| 0xBE | 0x00BE | VULGAR FRACTION THREE QUARTERS |
| 0xBF | 0x00BF | INVERTED QUESTION MARK |
| 0xC0 | 0x00C0 | LATIN CAPITAL LETTER A WITH GRAVE |
| 0xC1 | 0x00C1 | LATIN CAPITAL LETTER A WITH ACUTE |
| 0xC2 | 0x00C2 | LATIN CAPITAL LETTER A WITH CIRCUMFLEX |
| 0xC3 | 0x00C3 | LATIN CAPITAL LETTER A WITH TILDE |
| 0xC4 | 0x00C4 | LATIN CAPITAL LETTER A WITH DIAERESIS |
| 0xC5 | 0x00C5 | LATIN CAPITAL LETTER A WITH RING ABOVE |
| 0xC6 | 0x00C6 | LATIN CAPITAL LETTER AE |
| 0xC7 | 0x00C7 | LATIN CAPITAL LETTER C WITH CEDILLA |
| 0xC8 | 0x00C8 | LATIN CAPITAL LETTER E WITH GRAVE |
| 0xC9 | 0x00C9 | LATIN CAPITAL LETTER E WITH ACUTE |
| 0xCA | 0x00CA | LATIN CAPITAL LETTER E WITH CIRCUMFLEX |
| 0xCB | 0x00CB | LATIN CAPITAL LETTER E WITH DIAERESIS |
| 0xCC | 0x00CC | LATIN CAPITAL LETTER I WITH GRAVE |


| 0xCD | 0x00CD | LATIN CAPITAL LETTER I WITH ACUTE |
| :---: | :---: | :---: |
| 0xCE | 0x00CE | LATIN CAPITAL LETTER I WITH CIRCUMFLEX |
| 0xCF | 0x00CF | LATIN CAPITAL LETTER I WITH DIAERESIS |
| 0xD0 | 0x00D0 | LATIN CAPITAL LETTER ETH |
| 0xD1 | 0x00D1 | LATIN CAPITAL LETTER N WITH TILDE |
| 0xD2 | 0x00D2 | LATIN CAPITAL LETTER O WITH GRAVE |
| 0xD3 | 0x00D3 | LATIN CAPITAL LETTER O WITH ACUTE |
| 0xD4 | 0x00D4 | LATIN CAPITAL LETTER O WITH CIRCUMFLEX |
| 0xD5 | 0x00D5 | LATIN CAPITAL LETTER O WITH TILDE |
| 0xD6 | 0x00D6 | LATIN CAPITAL LETTER O WITH DIAERESIS |
| 0xD7 | 0x00D7 | MULTIPLICATION SIGN |
| 0xD8 | 0x00D8 | LATIN CAPITAL LETTER O WITH STROKE |
| 0xD9 | 0x00D9 | LATIN CAPITAL LETTER U WITH GRAVE |
| 0xDA | 0x00DA | LATIN CAPITAL LETTER U WITH ACUTE |
| 0xDB | 0x00DB | LATIN CAPITAL LETTER U WITH CIRCUMFLEX |
| 0xDC | 0x00DC | LATIN CAPITAL LETTER U WITH DIAERESIS |
| 0xDD | 0x00DD | LATIN CAPITAL LETTER Y WITH ACUTE |
| 0xDE | 0x00DE | LATIN CAPITAL LETTER THORN |
| 0xDF | 0x00DF | LATIN SMALL LETTER SHARP S |
| 0xE0 | 0x00E0 | LATIN SMALL LETTER A WITH GRAVE |
| 0xE1 | 0x00E1 | LATIN SMALL LETTER A WITH ACUTE |
| 0xE2 | 0x00E2 | LATIN SMALL LETTER A WITH CIRCUMFLEX |
| 0xE3 | 0x00E3 | LATIN SMALL LETTER A WITH TILDE |
| 0xE4 | 0x00E4 | LATIN SMALL LETTER A WITH DIAERESIS |
| 0xE5 | 0x00E5 | LATIN SMALL LETTER A WITH RING ABOVE |
| 0xE6 | 0x00E6 | LATIN SMALL LETTER AE |
| 0xE7 | 0x00E7 | LATIN SMALL LETTER C WITH CEDILLA |
| 0xE8 | 0x00E8 | LATIN SMALL LETTER E WITH GRAVE |
| 0xE9 | 0x00E9 | LATIN SMALL LETTER E WITH ACUTE |
| 0xEA | 0x00EA | LATIN SMALL LETTER E WITH CIRCUMFLEX |
| 0xEB | 0x00EB | LATIN SMALL LETTER E WITH DIAERESIS |
| 0xEC | 0x00EC | LATIN SMALL LETTER I WITH GRAVE |
| 0xED | 0x00ED | LATIN SMALL LETTER I WITH ACUTE |
| 0xEE | 0x00EE | LATIN SMALL LETTER I WITH CIRCUMFLEX |
| 0xEF | 0x00EF | LATIN SMALL LETTER I WITH DIAERESIS |
| 0xF0 | 0x00F0 | LATIN SMALL LETTER ETH |
| 0xF1 | 0x00F1 | LATIN SMALL LETTER N WITH TILDE |
| 0xF2 | 0x00F2 | LATIN SMALL LETTER O WITH GRAVE |
| 0xF3 | 0x00F3 | LATIN SMALL LETTER O WITH ACUTE |
| 0xF4 | 0x00F4 | LATIN SMALL LETTER O WITH CIRCUMFLEX |
| 0xF5 | 0x00F5 | LATIN SMALL LETTER O WITH TILDE |
| 0xF6 | 0x00F6 | LATIN SMALL LETTER O WITH DIAERESIS |
| 0xF7 | 0x00F7 | DIVISION SIGN |
| 0xF8 | 0x00F8 | LATIN SMALL LETTER O WITH STROKE |
| 0xF9 | 0x00F9 | LATIN SMALL LETTER U WITH GRAVE |
| 0xFA | 0x00FA | LATIN SMALL LETTER U WITH ACUTE |
| 0xFB | 0x00FB | LATIN SMALL LETTER U WITH CIRCUMFLEX |
| 0xFC | 0x00FC | LATIN SMALL LETTER U WITH DIAERESIS |
| 0xFD | 0x00FD | LATIN SMALL LETTER Y WITH ACUTE |
| 0xFE | 0x00FE | LATIN SMALL LETTER THORN |
| 0xFF | 0x00FF | LATIN SMALL LETTER Y WITH DIAERESIS |

## Index

[BEL] Audio alert, 201, 202
[BS] Insert back space, 70
[CAN] Clear print buffer, 200
[CR] Set carriage return, 69
[DC2] Begin $10 \mathrm{cpi}, 79$
[DC4] End one-line double-wide print, 93
[ENQ] <1> Inquire Cash Drawer 1 status, 210
[ENQ] $\langle 10\rangle$ Request printer reset, 211
[ENQ] <11> Request printer power cycle status, 212
[ENQ] <14> Inquire mechanical error status, 212
[ENQ] <15> Inquire printer state, 213
[ENQ] <20> Inquire all printer status, 214, 217, 218, 219, 222, 223
[ENQ] <21> Inquire printer ID, 215
[ENQ] <22> Inquire Error Status, 216
[ENQ] <23> Inquire user-store status, 207, 208, 217, 220, 221, 222
[ENQ] <3> Inquire receipt paper low status, 210
[ENQ] <4> Inquire receipt paper out status, 211
[ENQ] <8> Inquire cover open status, 211
[ENQ] <9> Inquire buffer status, 211
[ENQ] <n> Inquire printer status, 210
[ESC] - <1> Begin underline, 93, 95
[ESC] ! <n> Select international character set, 87, 88, 249, 252, 253, 254, 255, 256, 257, 262, 263, 264, 265, 269, 270, 271, 272, 273, 274
[ESC] \# <0> Begin $12 \times 12$ draft print, 82
[ESC] \$ Cancel user-defined characters, 92
[ESC] \% G Begin italics, 97
[ESC] \% H End italics, 97
[ESC] * <m> <0> <0> Set horizontal graphics mode, 113, 115
[ESC] * <m> <n $n_{1}><\mathrm{n}_{2}>$ Print graphics in mode <m>, 109
[ESC] ? <m> <n> Reassign graphic mode, 110
[ESC] @ Initialize the printer, 201
[ESC] [ @ ... Double-wide, double-high italics, 94
[ESC] [ $\mathrm{C}<\mathrm{n}>$ Insert Euro character, 89
[ESC] [ P <n> Set character pitch, 80, 258
[ESC] [ S... Redefine character set, 90
[ESC] [ $T<n_{h}><n_{1}>$ Select character code page, 87
[ESC] [BEL] $\left\langle\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle\left\langle\mathrm{n}_{3}\right\rangle$ Audio alert control, 202
[ESC] [EM] B <n> Set bar code height, 181, 195
[ESC] [EM] J <n> Set bar code justification and HRI modes, 196
[ESC] [SI] Begin 24 cpi, 79
[ESC] [US] 1 <Name..> <0> Load item process, 120
[ESC] [US] b <Name..> <0> Begin named macro record, 119, 121
[ESC] [US] c <Name..> <0> Save user-defined characters, 120, 122
[ESC] [US] d <Name..> <0> Delete item from user store, 124
[ESC] [US] e <Name..> <0> End name macro record, 122
[ESC] [US] e <Name..> <0> Remove item from user store, 120
[ESC] [US] e <Name..> <0> Stop name macro record, 119
[ESC] [US] f ALL <0> Flush user store, 121, 124
[ESC] [US] $1<$ Name> <0> Load macro/character, 123
[ESC] [US] m <Name..> <0> Save macro data, 122
[ESC] [US] m <Name..> Save macro data, 120
[ESC] [US] q <Name..> <0> Query user store, 125
[ESC] [US] r <Name> <0> Run macro data, 123
[ESC] [US] s <Name..> <0> Flag as a start-up macro, 120
[ESC] [US] s <Name..> <0> Flag start-up macro, 123
[ESC] ] Reverse line feed, 77
$[E S C] \wedge<n>$ Print control character, 91
[ESC] \lln> Enable data pass through, 204
[ESC] \lln> Enable print suppress, 204
$[\mathrm{ESC}]\langle\mathrm{n}\rangle\left\langle\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle$ Set horizontal position, 71
$[\mathrm{ESC}]=\langle\mathrm{y}\rangle\left\langle\mathrm{c}_{1}\right\rangle\left\langle\mathrm{c}_{2}\right\rangle \ldots$ Define user-defined characters, 91
$[E S C]=\mathrm{y} \mathrm{c}_{1} \mathrm{c}_{2} \ldots$ Define user-defined characters, 120
[ESC] > <n> Enable user-defined characters, 92
[ESC] 0 Set line spacing to $27 / 216$ inch, 72
[ESC] 1 Set line spacing to $7 / 72$ inch, 73
[ESC] 2 Enable variable line spacing, 73
[ESC] $3<n>$ Set line spacing to $\mathrm{n} / 216$ inch, 72
[ESC] 4 Set top of form, 75
[ESC] $5<01>$ Begin auto line feed, 76
[ESC] 8 Disable paper out sensor, 199
[ESC] 9 Enable paper out sensor, 199
[ESC] a <n>Set justification, 71
[ESC] A <n> Set variable line spacing to $\mathrm{n} / 72$ inch, 73
[ESC] b <n> ... Print bar code, 128, 131, 133, 136,
137, 138, 139, 140, 141, 142, 144, 145, 146, 147,
$148,149,150,151,152,153,155,157,160,161$,
$163,164,166,167,168,169,170,171,184,186$,
187, 188, 189, 190, 191, 192, 193, 194, 225
[ESC] $\left.B<n_{1}\right\rangle\left\langle n_{2}\right\rangle \ldots<n_{i}>0$ Set vertical tab stops, 75
[ESC] Begin 12 cpi, 79
[ESC] C [NUL] <n> Set form length in inches, 76
[ESC] c <n> Select color, 92
[ESC] C <n> Set form length in lines, 76
[ESC] $d<n>$ Feed $<n>$ lines at current spacing, 74
[ESC] D $\left.\left\langle\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle\left\langle\mathrm{n}_{3}\right\rangle \ldots<\mathrm{n}_{\mathrm{i}}\right\rangle 0$ Set horizontal tab stops, 70, 71
[ESC] E Begin emphasized print, 95
[ESC] F End emphasized print, 96
[ESC] f Select receipt station, 99, 101, 103, 104, 105, 106, 107
[ESC] g <0> Process user macro, 127
[ESC] g <1> Start macro record, 119, 127
[ESC] g <2> Stop macro record, 120, 127
[ESC] g <3> Stop macro record and save, 127
[ESC] G Begin enhanced print, 95
[ESC] h <color> <length> <format> <data> Process color graphics, 112, 116, 117, 118
[ESC] h <color> <length> <format> <data> Process horizontal graphics, 112
[ESC] H End enhanced print, 95
[ESC] I <n> Set print quality mode, 82
[ESC] $\mathrm{J}<\mathrm{n}>$ Fine line feed, 72
[ESC] $\mathrm{K}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ Print single-density graphics, 108
[ESC] $L<n_{1}><n_{2}>$ Print half-speed double-density graphics, 108
[ESC] $\mathrm{P}<\mathrm{n}>$ Begin rotated font, 83
[ESC] p $3<n>$ Select paper sensor(s) to output paperend signals, 203
[ESC] p 4 <n> Select paper sensor(s) to stop printing, 203
[ESC] p 5 <n> Enable/disable paper feed, 202
[ESC] q <n> Query marker, 200
[ESC] R Reset horizontal and vertical tab stops, 70, 75
[ESC] S <0> Select superscript, 96
[ESC] S <1> Select subscript, 96
[ESC] T End superscript or subscript, 96
[ESC] U <0> Begin bi-directional print, 111
[ESC] U < $1>$ Begin unidirectional print, 110
[ESC] V <n> Set intercharacter spacing, 81
[ESC] W <n> Double-wide, double-high mode, 93
[ESC] x <n> Open cash drawer, 201
[ESC] $\mathrm{X}\left\langle\mathrm{n}_{1}\right\rangle\left\langle\mathrm{n}_{2}\right\rangle$ Set left/right print margin, 199
[ESC] y <n> Set feature control, 205
[ESC] Y $<\mathrm{n}_{1}><\mathrm{n}_{2}>$ Print full-speed double-density graphics, 109
[ESC] $\mathrm{Z}<\mathrm{n}_{1}><\mathrm{n}_{2}>$ Print quad-density graphics, 109
[FF] Set form feed, 75, 77
[HT] Set horizontal tab, 69
[LF] Set line feed, 69
[SI] Begin 17 cpi, 79
[SO] Begin one-line double-wide print, 92
[SOH] <n> Begin multi-drop control, 205
[VT] Set vertical tab, 74
10 CPI Character Pitch, Beginning, 79
12 CPI Character Pitch, Beginning, 79
$12 \times 12$ Draft Print Mode, Beginning, 82
17 CPI Character Pitch, Beginning, 79
24 CPI Character Pitch, Beginning, 79
APA Graphics, Printing, 109
Application Development, 62
Audio Alert, Configuring, 202
Auido alert, 202
Auto cut, Performing, 201
Auto Line Feed, Beginning, 76
Back Space, 70
Bar Code, Print, 128, 131, 133, 136, 137, 138, 139,
140, 141, 142, 144, 145, 146, 147, 148, 149, 150,
$151,152,153,155,157,160,161,163,164,166$,
$167,168,169,170,171,184,186,187,188,189$,
190, 191, 192, 193, 194, 225
Bar Code, Set height, 181, 195
Bar Code, Set Justification, Print Direction, 196
Bar Codes, 128
Begin Italics, 97
Bi-directional Printing, Beginning, 111
Boot Loader Mode, 52
Buffer, 295
Carriage Return, 69
Cash Drawer 1 Status, Inquire, 210
Cash drawer, Opening, 201
Change User Store Terminator, 125
Changing Interface Cards, 36
Character attributes, 92
Character Code Page, Setting, 87
Character Pitch, Setting, 80, 258

Character Set, Redefining, 90
Code Page Definitions, 317
Color Graphics, 230
Commands, User-store, 121
Communication
Features, 307
Parallel Port, 293
Serial Port, 298
Communications Interface, 30
Configuration
Remote, 54
Configuration Mode
Overview, 53
Connecting Communication Cables, 38
Connecting Power, 37
Control Character, Printing, 91
Control Codes
Overview, 61
Control Codes and Commands, 63
Control Feature, Setting, 205
Cover Open Status, Inquire, 211
Current Requirements, 31
Data pass-through, 307
Display Pass Through, 32, 305
Display pass-through, 307
Double Density Graphics, Full-Speed Printing, 109
Double Density Graphics, Half-Speed Printing, 108
Emphasized Print Mode, Beginning, 95
Emphasized Print Mode, Ending, 96
End Italics, 97
Enhanced Print Mode, Ending, 95
Enhanced print, Beginning, 95
Entering Configuration Mode, 53
Entering Self-Test Mode, 49
EPOS
Codes, 226
EPOS Emulation, 62
Error Status, Inquire, 216
Euro Character, Inserting, 89
Extended APA Graphics, 109
Extended Diagnostics
Hex-Dump, 51
Firmware Configuration, 39
Flow control
Data Terminal Ready (DTR), 298
Ready/Busy, 298
XON/XOFF, 298
Form Feed, 75, 77
Form Length, Setting Inches, 76
Form Length, Setting Lines, 76
Forming characters, 241
Graphic
Mode, 108
Graphic Data, Processing, 112, 116, 117, 118
Graphic Mode, Reassigning, 110
Graphic mode, Set Horizontal, 113, 115
Graphic save, 119

## Graphics

all-points-addressable (APA), 230
Character, 228
color, 112
horizontal, 112

Horizontal, 230
printing, 228
Horizontal Motion Control, 69
Horizontal Position, Setting, 71
Horizontal Tab, 69
Horizontal tab Stops, Setting, 70, 71
IEEE 1284 buffer, Clearing, 211
Indicator Lights, 45
Indicators
Fault, 46
Initialize the Printer, 201
Inquire Commands, 210
Installing Cables, 37
Installing Paper, 39
Intercharacter Spacing, Setting, 81
International Character Set, Selecting, 87, 88, 249,
252, 253, 254, 255, 256, 257, 262, 263, 264, 265, 269, 270, 271, 272, 273, 274
IPCL Codes, 62
Justification, Setting, 71
LED indicator
error, 45
paper, 45
power, 45
Level 0 diagnostics, 51
Line feed, 69
Line Feed Button, 45
Line Feed, Performing, 72
Line Feed, Reverse, 77
Line Spacing, Enabling, 73
Line Spacing, Feeding Lines, 74
Line Spacing, Set at $21 / 2,16$-inch and $7 / 72$ inch, 73
Line Spacing, Set-1/8 inch, 72
Line Spacing, Set-n/216 inch, 72
Line Spacing-Variable, Setting, 73
Machanical Error Status, Inquire, 212
Macro Data, Run from user Store, 123
Macro Data, Saving, 120
Macro Data, Saving in user Store, 122
Macro Record, Beginning, 119
Macro Record, Ending, 122
Macro Record, Ending name, 119
Macro Record, Start, 127
Macro Record, Starting, 119, 121
Macro Record, Stop, 127
Macro Record, Stop and Save, 127
Macro, Flag on Startup, 123
Microline Emulation, 62
Multidrop configuration, 307
Multi-Drop Control, Beginning, 205
Multiline Mode, 93
Off-line active, 308
One Line/Double Wide Print, Beginning, 92
One Line/Double Wide Print, Canceling, 93
Output Paper end Signals, Selecting Paper Sensors, 203
paper Feed, Enable, Disable, 202
Paper Motion, 69
Paper Out Sensor, disable, 199
Paper Out Sensor, enabling, 199
Paper Out Status, Inquire, 211
Paper Sensors, Selecting to Stop Printing, 203

Parallel Interface Connector, 38
Parallel port timing, 293
PcOS Control Codes, 63
PcOS Quick Reference Chart, 63
Plug and Play
parallel, 297
Serial, 302
Power Control, Remote, 284, 285
Power Cycle Status, Inquire, 212
Power-cycle recovery, 307
Print Buffer Flow, 300
Print Buffer Size, 302
Print buffer, control, 200
Print buffers, 286
Print Current Configuration, 281
Print Current totals, 281
Print margins, setting, 199
Print Quality Mode, Setting, 82
Print Style, Setting, 94
Print Supress/Data Pass Through, Enabling, 204
Printer ID, Inquire, 215
Printer Reset, Requesting, 211
Printer State, Inquire, 213
Printer Status, 209
Printer Status, Inquire, 210, 214, 217, 218, 219, 222, 223
Process User Macro, 127
Programmer's Notes, 310
Programming Considerations, 126
Quad Density Graphics, Printing, 109
Query marker, 200
Read and return Totals, 280
Recovery form Mechanical Errors, 309
Regulatory Compliance, 3
Remote Power Control, 284
Remote Reset, 306
Removing Old Interface Cards, 37
Rotated Font, Beginning, 83
Select Color, 92
Select Subscript, 96
Select Superscript, 96
Self-Test
Using, 49
Serial Device Identification, 303
Serial Interface Communication, 32
Serial Interface Connector, 38
Serial port
flow control, 298
Serial Port
Inquire, 303, 304
Signal Levels, 31
Single Density Graphics, Printing, 108
Specifications and Requirements, 20
Standard APA Graphics, 108
Standard Emulation, 62
Start up Macro, Flagging, 120
Status Inquire, 209
Status, Inquire Receipt Paper Low, 210
Superscript and Subscript, 96
Tab Stops, Resetting, 70, 75
Testing the Printer, 49
Top of Form, Setting, 75

Underline, Beginning, 93, 95
Unidirectional Printing, Beginning, 110
USB Interface Connector, 38
User Defined Character, Saving, 120, 122
User Defined Characters, Canceling, 92
User Defined Characters, Defining, 91, 120
User Defined Characters, Enabling, 92
User macros, 126
User store, 119
User Store Status, Inquire, 207, 208, 217, 220, 221, 222

User Store, Delete item, 124
User Store, Flush Information, 121, 124
User Store, Load item, 123
User Store, Loading item, 120
User Store, Removing Item, 120
User Store, Report, 125
User Store, Reporting, 121
Using DSR, 302
Vertical Tab, 74
Vertical Tab Stops, Setting, 75


[^0]:    ${ }^{1}$ Monochrome printing. In some cases depending on the print density the print speed may be slower or faster. Print speed will be slower when using adhesive backed or color paper.
    ${ }^{2}$ The number of characters per line depend on the paper size being used and the character pitch in affect.

[^1]:    ${ }^{3}$ Character spacing is adjustable from 1 to 30 CPI. Typical values will be between 8 and 20 CPI depending on the font selected. Values of 13.3, 14.86, or 17.3 are typical for each resident font.
    ${ }^{4}$ Barcodes include: EAN 8, EAN 13, EAN 14, GS1-128 (EAN128), Codabar, Code 2 of 5, Code39, Code-39 Extended, Code-93, Code-128(A,B, and C), UPC A, UPC E, Code49, Code16K, PDF417, MicroPDF417, Maxicode, QRCode, Datamatrix, GS1-Databar-14, GS1-DatabarTruncated, GS1-Databar-Limited, GS1-Databar-Expanded, GS1-Databar-14 Stacked, GS1-Databar-14 Stacked-Omni, GS1-Databar-Expanded Stacked, Aztec, EANX Composite, EAN128 Composite, GS1-Databar-14 Composite, GS1-Databar-Truncated Composite, GS1-DatabarLimited Composite, GS1-Databar-Expanded Composite, UPC A Composite, UP CE Composite, GS1-Databar-14 Stacked Composite, GS1-Databar-14 Omni Composite, GS1-Databar-Expanded Stacked Composite, and EAN 2 and EAN 5 Add on barcodes.

[^2]:    ${ }^{5}$ Adhesive backed paper print speed is paper dependent.
    ${ }^{6}$ Color paper print speed is paper dependent.
    ${ }^{7}$ Typical print on 80 mm paper uses 576 of the 640 available dots.

[^3]:    ${ }^{8}$ For DC powered printers, the cash drawer is supplied directly from the DC input supply. The cash drawer requirements may affect the allowable range of voltages.

[^4]:    ${ }^{9}$ The print head has 640 elements; however, typically only 576 are used with 80 mm paper, 448 for 58 mm paper, and 288 for 40 mm paper.
    ${ }^{10}$ The printer is designed to use 80 mm paper. Whereas the printer can be configured to use all 640 print elements, there is no guarantee that all the elements will fall on the paper.

[^5]:    ${ }^{11}$ The printer can be configured to use two color thermal papers, however, at this time Transact does not have any recommendations for a specific paper.
    ${ }^{12}$ Currently only NCR 80 mm and 40 mm liner less papers are qualified for use in the M9000 printer.

[^6]:    ${ }^{13}$ A subset of the RFC1213 is supported that will allow basic printer status and network management to be performed.

[^7]:    ${ }^{14}$ The 58 mm position is not sensed so the printer cannot automatically switch between 80 mm and 58 mm paper but can automatically switch between 58 and 40 mm paper.

[^8]:    ${ }^{15}$ ESC/POS is a registered trademark of the Seiko Epson Corporation.

[^9]:    ${ }^{16}$ UTF32 requires special firmware. See page 255 for more information

[^10]:    ${ }^{17}$ Epson provides limited code page support through ID to code page translation. Only six translations are defined.

[^11]:    ${ }^{19}$ Horizontal Color graphics is not compatible with Page Mode.

[^12]:    ${ }^{20}$ The actual buffer is smaller because of the overhead.
    ${ }^{21}$ IPCL commands are converted by the printer into an equivalent [ESC] code and then placed in the save buffer. The equivalent [ESC] code should be used to calculate the size of the save buffer data.

[^13]:    ${ }^{22}$ The 14 digit field is not a simple sequence of digits but must follow EAN.UCC conventions and the GS-1 General specification.

[^14]:    ${ }^{23}$ The Model 9000 prints the Maxicode slightly larger 1 inch square to improve readability.

[^15]:    ${ }^{24}$ The Aztec Standard allows values from 0 through 255. However, at this time the Model 9000 will not handle a NUL,

[^16]:    ${ }^{25}$ It is possible for the Model 9000 to accept () rather than [] to delaminate AI fields, however if that is done, the () characters may not be used in the data.

[^17]:    ${ }^{27}$ In some cases a small 58 mm paper print zone is used on 40 mm paper although some of the print may miss the paper.
    ${ }^{28} 82 \mathrm{~mm}$ Paper is not supported in the Model 9000.

[^18]:    ${ }^{29}$ Ithaca ${ }^{\circledR}$ Color Image Processor is patent pending

[^19]:    ${ }^{30}$ Color is supported with special color firmware option.
    ${ }^{31}$ Universal color graphics is not compatible with Page Mode.
    ${ }^{32}$ The PJColor program has been enhanced to provide several ways to create color Logos and Coupons and make them available to the Model 9000 printer.

[^20]:    ${ }^{33}$ Characters are dot-like because they are not guaranteed to be exactly at an exact dot equivalent. They are spaced in a fixed character cell that provides equivalent spacing and alignment as a fixed character size, however the actual character size is defined by the font designer.

[^21]:    ${ }^{34}$ Some but not all features of Open Type fonts are supported.
    ${ }^{35}$ Compressed Stroke fonts are supplied by MonoType Inc.

[^22]:    ${ }^{36}$ The Star emulation does not allow the use of [ESC] y commands for extended diagnostics. The [ESC] y commands are not available.

[^23]:    ${ }^{37}$ Only a subset of the RFC 3805 Printer MIB is supported. SNMP is primary supported to assist in network maintenance.

[^24]:    ${ }^{38}$ The buffer always signals it is full before it overflows. The size of the reserve depends on the buffer size selected. It is always at least 255 bytes.

[^25]:    ${ }^{39}$ Buffer size should not be used to control the printer when the USB interface is used. The printer will automatically adjust the buffer to USB packet size.

[^26]:    ${ }^{40}$ Most fault will auto recover. A cutter fault will not as it was probably caused by a paper jam and that must be cleared by the operator.

[^27]:    ${ }^{41}$ A Printer Driver is not the same as the USB Printing Support Driver. The USB Printing Support driver supports the USB interface but does not provide print services. The Printer Driver provides a printer specific API on top of the USB Driver.

